Organophosphorus esters (OPEs), exemplified by tris (2-chloroethyl) phosphate (TCEP), find extensive application in diverse industries such as construction materials, textiles, chemical manufacturing, and electronics, consequently resulting in an increased concentration of these compounds in industrial wastewater. The fundamental objective of this investigation was to examine the degradation of TCEP through the implementation of US/Fenton oxidation techniques in a solution. The findings revealed that the US/Fenton system effectively facilitated the degradation of TCEP, with the Chan kinetic model precisely elucidating the degradation process. Under optimized reaction conditions, the degradation efficiency of TCEP reached an impressive 93.18%. However, the presence of common co-existing aqueous substrates such as Cl, HCO, HPO, and HA hindered the degradation process. Bursting tests and electron paramagnetic resonance (EPR) studies affirmed ∙OH oxidation as the principal mechanism underlying TCEP degradation. Detailed degradation pathways for TCEP were established through the utilization of density-functional theory (DFT) calculations and GC/MS tests. Moreover, the ecotoxicological evaluation of TCEP and its intermediates was conducted using the Toxicity Estimation Software Tool (T.E.S.T.).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33815-8DOI Listing

Publication Analysis

Top Keywords

tris 2-chloroethyl
8
2-chloroethyl phosphate
8
tcep
8
phosphate tcep
8
us/fenton system
8
degradation tcep
8
degradation process
8
degradation
7
synergistic degradation
4
degradation tris
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!