Purpose: This work presents the implementation of an RGB-D camera as a surrogate signal for liver respiratory-induced motion estimation. This study aims to validate the feasibility of RGB-D cameras as a surrogate in a human subject experiment and to compare the performance of different correspondence models.
Methods: The proposed approach uses an RGB-D camera to compute an abdominal surface reconstruction and estimate the liver respiratory-induced motion. Two sets of validation experiments were conducted, first, using a robotic liver phantom and, secondly, performing a clinical study with human subjects. In the clinical study, three correspondence models were created changing the conditions of the learning-based model.
Results: The motion model for the robotic liver phantom displayed an error below 3 mm with a coefficient of determination above 90% for the different directions of motion. The clinical study presented errors of 4.5, 2.5, and 2.9 mm for the three different motion models with a coefficient of determination above 80% for all three cases.
Conclusion: RGB-D cameras are a promising method to accurately estimate the liver respiratory-induced motion. The internal motion can be estimated in a non-contact, noninvasive and flexible approach. Additionally, three training conditions for the correspondence model are studied to potentially mitigate intra- and inter-fraction motion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11329552 | PMC |
http://dx.doi.org/10.1007/s11548-024-03176-1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!