AI Article Synopsis

  • Chronic wounds, often exacerbated by conditions like diabetes, require advanced care methods beyond standard practices, and 3D-bioprinting presents a promising solution for creating personalized and effective wound dressings.
  • The review discusses the limitations of traditional wound care, emphasizing the potential of using natural biomaterials with 3D printing technology to develop customized dressings for various chronic wound situations, supported by recent research and patents.
  • Experts recognize the challenges and costs associated with wound treatment, viewing 3D printing as a revolutionary yet developing technology that could enhance treatment outcomes by promoting healing processes, despite existing resistance within the healthcare system.

Article Abstract

Introduction: Chronic wounds require more sophisticated care than standard wound care because they are becoming more severe as a result of diseases like diabetes. By resolving shortcomings in existing methods, 3D-bioprinting offers a viable path toward personalized, mechanically strong, and cell-stimulating wound dressings.

Areas Covered: This review highlights the drawbacks of traditional approaches while navigating the difficulties of managing chronic wounds. The conversation revolves around employing natural biomaterials for customized dressings, with a particular emphasis on 3D-bioprinting. A thorough understanding of the uses of 3D-printed dressings in a range of chronic wound scenarios is provided by insights into recent research and patents.

Expert Opinion: The expert view recognizes wounds as a historical human ailment and emphasizes the growing difficulties and expenses related to wound treatment. The expert acknowledges that 3D printing is revolutionary, but also points out that it is still in its infancy and has the potential to enhance mass production rather than replace it. The review highlights the benefits of 3D printing for wound dressings by providing instances of smart materials that improve treatment results by stimulating angiogenesis, reducing pain, and targeting particular enzymes. The expert advises taking action to convert the technology's prospective advantages into real benefits for patients, even in the face of resistance to change in the healthcare industry. It is believed that the increasing evidence from in-vivo studies is promising and represents a positive change in the treatment of chronic wounds toward sophisticated 3D-printed dressings.

Download full-text PDF

Source
http://dx.doi.org/10.1080/17425247.2024.2355184DOI Listing

Publication Analysis

Top Keywords

chronic wounds
12
chronic wound
8
review highlights
8
3d-printed dressings
8
wound
6
chronic
5
comprehensive review
4
review application
4
application 3d-bioprinting
4
3d-bioprinting chronic
4

Similar Publications

Background: To investigate the effect of Midnight-noon Ebb-flow combined with five-element music therapy in the continuous nursing of patients with chronic wounds.

Methods: From March 2022 to November 2023, we recruited 50 eligible chronic wound patients and randomly divided them into two groups according to a random number table: the experimental group (n = 25) and the control group (n = 25). The control group was treated with conventional nursing measures.

View Article and Find Full Text PDF

Charge Regulation-Enhanced Type I Photosensitizer-Loaded Hydrogel Dressing for Hypoxic Bacterial Inhibition and Biofilm Elimination.

ACS Nano

January 2025

State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.

View Article and Find Full Text PDF

The WOUND-Q is a patient-reported outcome measure for individuals with any type of chronic wound. This study aimed to identify patient and wound factors associated with the four WOUND-Q health-related quality of life (HRQL) scales: Life impact, Psychological, Sleep, and Social. Adults with a chronic wound were recruited internationally through clinical settings between August 2018 and May 2020, and through an online platform (i.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is one of the most common chronic endocrine diseases, characterized by hyperglycemia, due to abnormal nitric oxide synthesis. The trend of an increase in the number of patients with DM continues. The medical and economic burden of DM is not only associated with hyperglycemia management but also with the management of DM-related complications.

View Article and Find Full Text PDF

Background: Debridement is considered the first step in treatment of chronic wounds, however, current enzymatic and autolytic debridement agents are slow or ineffective. Previous studies have shown positive initial results with EscharEx® (EX-02 formulation), a Bromelain-based enzymatic debridement agent in development for chronic wounds. The main objective of this study was to assess its efficacy in debriding venous leg ulcers (VLU), compared to gel vehicle (GV) as a placebo control and to non-surgical standard of care (NSSOC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!