are key players in microbiome assembly of the diatom .

Appl Environ Microbiol

Marine Microbiomics Lab, Biology Program, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.

Published: June 2024

Unlabelled: The complex interactions between bacterioplankton and phytoplankton have prompted numerous studies that investigate phytoplankton microbiomes with the aim of characterizing beneficial or opportunistic taxa and elucidating core bacterial members. Oftentimes, this knowledge is garnered through 16S rRNA gene profiling of microbiomes from phytoplankton isolated across spatial and temporal scales, yet these studies do not offer insight into microbiome assembly and structuring. In this study, we aimed to identify taxa central to structuring and establishing the microbiome of the ubiquitous diatom . We introduced a diverse environmental bacterial community to in nutrient-rich or nutrient-poor media in a continuous dilution culture setup and profiled the bacterial community over 7 days. 16S rRNA amplicon sequencing showed that cyanobacteria () and dominate the microbiome early on and maintain a persistent association throughout the experiment. Differential abundance, co-abundance networks, and differential association analyses revealed that specific members of the family , particularly amplicon sequence variants, become integral members in microbiome assembly. In the presence of the diatom, species and other developed positive associations with taxa that are typically in high abundance in marine ecosystems ( and ), leading to restructuring of the microbiome compared to diatom-free controls. These positive associations developed predominantly under oligotrophic conditions, highlighting the importance of investigating phytoplankton microbiomes in as close to natural conditions as possible to avoid biases that develop under routine laboratory conditions. These findings offer further insight into phytoplankton-bacteria interactions and illustrate the importance of , not merely as phytoplankton symbionts but as key taxa involved in microbiome assembly.

Importance: Most, if not all, microeukaryotic organisms harbor an associated microbial community, termed the microbiome. The microscale interactions that occur between these partners have global-scale consequences, influencing marine primary productivity, carbon cycling, and harmful algal blooms to name but a few. Over the last decade, there has been a growing interest in the study of phytoplankton microbiomes, particularly within the context of bloom dynamics. However, long-standing questions remain regarding the process of phytoplankton microbiome assembly. The significance of our research is to tease apart the mechanism of microbiome assembly with a particular focus on identifying bacterial taxa, which may not merely be symbionts but architects of the phytoplankton microbiome. Our results strengthen the understanding of the ecological mechanisms that underpin phytoplankton-bacteria interactions in order to accurately predict marine ecosystem responses to environmental perturbations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218658PMC
http://dx.doi.org/10.1128/aem.00570-24DOI Listing

Publication Analysis

Top Keywords

microbiome assembly
20
phytoplankton microbiomes
12
microbiome
11
phytoplankton
8
16s rrna
8
offer insight
8
bacterial community
8
positive associations
8
phytoplankton-bacteria interactions
8
phytoplankton microbiome
8

Similar Publications

Leveraging human microbiomes for disease prediction and treatment.

Trends Pharmacol Sci

December 2024

Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Microbiome Center, Department of Pathology, Texas Children's Hospital, Houston, TX, USA. Electronic address:

The human microbiome consists of diverse microorganisms that inhabit various body sites. As these microbes are increasingly recognized as key determinants of health, there is significant interest in leveraging individual microbiome profiles for early disease detection, prevention, and drug efficacy prediction. However, the complexity of microbiome data, coupled with conflicting study outcomes, has hindered its integration into clinical practice.

View Article and Find Full Text PDF

Beyond protein folding: The pleiotropic functions of PPIases in cellular processes and microbial virulence.

Biochim Biophys Acta Gen Subj

December 2024

Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India. Electronic address:

Peptidyl prolyl cis/trans isomerases (PPIases), a ubiquitously distributed superfamily of enzymes, associated with signal transduction, trafficking, assembly, biofilm formation, stress tolerance, cell cycle regulation, gene expression and tissue regeneration, is a key regulator of metabolic disorders and microbial virulence. This review assumes an integrative approach, to provide a holistic overview of the structural and functional diversity of PPIases, examining their conformational dynamics, cellular distribution, and physiological significance. We explore their intricate involvement in cellular processes and virulence modulation in both eukaryotic and prokaryotic systems.

View Article and Find Full Text PDF

Role of horizontal gene transfer and cooperation in rhizosphere microbiome assembly.

Braz J Microbiol

December 2024

Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Pádua Dias Av, 11, Piracicaba, SP, 13418-900, Brazil.

Microbes employ a variety of mechanisms, encompassing chemical signaling (e.g., quorum-sensing molecules) and genetic processes like horizontal gene transfer (HGT), to engage in interactions.

View Article and Find Full Text PDF

Phocaeicola vulgatus shapes the long-term growth dynamics and evolutionary adaptations of Clostridioides difficile.

Cell Host Microbe

December 2024

Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA; Department of Chemical & Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA. Electronic address:

Clostridioides difficile can transiently or persistently colonize the human gut, posing a risk for infections. This colonization is influenced by complex molecular and ecological interactions with the human gut microbiota. By investigating C.

View Article and Find Full Text PDF

Genome assembly and annotation of microalga C018.

Microbiol Resour Announc

December 2024

Marine Laboratory, Duke University, Beaufort, North Carolina, USA.

The microalga is an important organism for algae-based biocommodity production of food, feed, and fuel, among other products. Using PacBio Revio, we sequenced, assembled, and annotated a 26.41 Mbp C018 genome.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!