The synthesis and properties of stoichiometric, reduced, and Co-doped InO are described in the light of several experimental techniques, including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet (UV)-visible spectroscopy, porosimetry, and density functional theory (DFT) methods on appropriate models. DFT-based calculations provide an accurate prediction of the atomic and electronic structure of these systems. The computed lattice parameter is linearly correlated with the experimental result in the Co concentration ranging from 1.0 to 5.0%. For higher Co concentrations, the theoretical-experimental analysis of the results indicates that the dopant is likely to be preferentially present at surface sites. The analysis of the electronic structure supports the experimental assignment of Co for the doped material. Experiments and theory find that the presence of Co has a limited effect on the material band gap.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181267 | PMC |
http://dx.doi.org/10.1021/acsami.4c05727 | DOI Listing |
Sci Rep
December 2024
Department of Electrical and Electronic Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1205, Bangladesh.
Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research. A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations. In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology with graph neural network which offers an accuracy of and an F1 score of in classifying topological versus non-topological materials, outperforming the other state-of-the-art classifier models.
View Article and Find Full Text PDFSci Rep
December 2024
Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior, 474 011, India.
This study presents a comprehensive investigation into the intrinsic properties of RNiP (where R = Sm, Eu) filled skutterudite, employing the full-potential linearized augmented plane wave method within density functional theory (DFT) simulations using the WIEN2k framework. Structural, phonon stability, mechanical, electronic, magnetic, transport, thermal, and optical properties are thoroughly explored to provide a holistic understanding of these materials. Initially, the structural stability of SmNiP and EuNiP is rigorously evaluated through ground-state energy calculations obtained from structural optimizations, revealing a preference for a stable ferromagnetic phase over competing antiferromagnetic and non-magnetic phases.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.
View Article and Find Full Text PDFSmall Methods
December 2024
Department of Electronic Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
This study introduces a novel method for achieving highly ordered-crystalline InGaO [0 ≤ x ≤ 0.6] thin films on Si substrates at 250 °C using plasma-enhanced atomic-layer-deposition (PEALD) with dual seed crystal layers (SCLs) of γ-AlO and ZnO. Field-effect transistors (FETs) with random polycrystalline InGaO channels (grown without SCLs) show a mobility (µFE) of 85.
View Article and Find Full Text PDFSmall Methods
December 2024
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, No. 68 Wenchang Road, Kunming, 650093, China.
Controllably modulating the structure of transition-metal chalcogenides (TMCs) from 2D to 1D and tuning their electronic properties has drawn particular attention currently due to their remarkable properties and potential applications. In this work, by precisely controlling the chemical concentration of Te atoms, the transformation from the 2D honeycomb AgTe monolayer to high-quality and well-defined 1D AgTe nanowires on the Ag(111) substrate has been successfully achieved. The combination of scanning tunneling microscopy measurements and first-principles calculations has confirmed that the mechanism underlying the entire dimensional transformation lies in the directional movement of Ag atoms in the 2D AgTe monolayer regulated by the concentration of Te atoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!