Commercial culture of channel catfish () occurs in earthen ponds that are characterized by diel swings in dissolved oxygen concentration that can fall to severe levels of hypoxia, which can suppress appetite and lead to suboptimal growth. Given the significance of the hypothalamus in regulating these processes in other fishes, an investigation into the hypothalamus transcriptome was conducted to identify specific genes and expression patterns responding to hypoxia. Channel catfish in normoxic water were compared with catfish subjected to 12 h of hypoxia (20% oxygen saturation; 1.8 mg O/L; 27°C) followed by 12 h of recovery in normoxia to mimic 24 h in a catfish aquaculture pond. Fish were sampled at 0-, 6-, 12-, 18-, and 24-h timepoints, with the 6- and 12-h samplings occurring during hypoxia. A total of 190 genes were differentially expressed during the experiment, with most occurring during hypoxia and returning to baseline values within 6 h of normoxia. Differentially expressed genes were sorted by function into Gene Ontology biological processes and revealed that most were categorized as "response to hypoxia," "sprouting angiogenesis," and "cellular response to xenobiotic stimulus." The patterns of gene expression reported here suggest that transcriptome responses to hypoxia are broad and quickly reversibly with the onset of normoxia. Although no genes commonly reported to modulate appetite were found to be differentially expressed in this experiment, several candidates were identified for future studies investigating the interplay between hypoxia and appetite in channel catfish, including , , , and . Channel catfish are an economically important species that experience diel episodic periods of hypoxia that can reduce appetite. This is the first study to investigate their transcriptome from the hypothalamus in a simulated 24-h span in a commercial catfish pond, with 12 h of hypoxia and 12 h of normoxia. The research revealed functional groups of genes relating to hypoxia, angiogenesis, and glycolysis as well as individual target genes possibly involved in appetite regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00007.2024DOI Listing

Publication Analysis

Top Keywords

channel catfish
20
differentially expressed
12
hypoxia
11
pond hypoxia
8
catfish
8
occurring hypoxia
8
expressed experiment
8
genes
6
channel
5
appetite
5

Similar Publications

Complete genome sequence of sp. strain KCF3-3, isolated from the body surface of channel catfish, .

Microbiol Resour Announc

December 2024

Department of Life Sciences, Graduate School of Bioresources, Mie University, Tsu, Mie, Japan.

Here, we report the complete genome sequence of sp. strain KCF3-3, isolated from the body surface of channel catfish, . The assembly revealed a chromosome size of 5,623,437 bp with an estimated 4,939 open reading frames.

View Article and Find Full Text PDF

Hemolytic proteins are a major group of virulence factors in pathogenic Aeromonas hydrophila. Six genes encoding presumable hemolytic proteins were revealed from the genome of virulent A. hydrophila (vAh) that caused severe disease in channel catfish.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!