AI Article Synopsis

Article Abstract

Miniature shape-morphing soft actuators driven by external stimuli and fluidic pressure hold great promise in morphing matter and small-scale soft robotics. However, it remains challenging to achieve both rich shape morphing and shape locking in a fast and controlled way due to the limitations of actuation reversibility and fabrication. Here, fully 3D-printed, sub-millimeter thin-plate-like miniature soft hydraulic actuators with shape memory effect (SME) for programable fast shape morphing and shape locking, are reported. It combines commercial high-resolution multi-material 3D printing of stiff shape memory polymers (SMPs) and soft elastomers and direct printing of microfluidic channels and 2D/3D channel networks embedded in elastomers in a single print run. Leveraging spatial patterning of hybrid compositions and expansion heterogeneity of microfluidic channel networks for versatile hydraulically actuated shape morphing, including circular, wavy, helical, saddle, and warping shapes with various curvatures, are demonstrated. The morphed shapes can be temporarily locked and recover to their original planar forms repeatedly by activating SME of the SMPs. Utilizing the fast shape morphing and locking in the miniature actuators, their potential applications in non-invasive manipulation of small-scale objects and fragile living organisms, multimodal entanglement grasping, and energy-saving manipulators, are demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202402517DOI Listing

Publication Analysis

Top Keywords

shape morphing
16
shape memory
12
shape
9
fully 3d-printed
8
miniature soft
8
soft hydraulic
8
hydraulic actuators
8
actuators shape
8
morphing shape
8
shape locking
8

Similar Publications

4D-Printed Magnetic Responsive Bilayer Hydrogel.

Nanomaterials (Basel)

January 2025

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.

Despite its widespread application in targeted drug delivery, soft robotics, and smart screens, magnetic hydrogel still faces challenges from lagging mechanical performance to sluggish response times. In this paper, a methodology of in situ generation of magnetic hydrogel based on 3D printing of poly-N-isopropylacrylamide (PNIPAM) is presented. A temperature-responsive PNIPAM hydrogel was prepared by 3D printing, and FeO magnetic particles were generated in situ within the PNIPAM network to generate the magnetic hydrogel.

View Article and Find Full Text PDF

Geometric description of a gliding grey-headed albatross () for computer-aided design.

Bioinspir Biomim

January 2025

Department of Mechanical and Aeronautical Engineering, University of Pretoria, 1 Lynnwood Road, Pretoria, 0002, SOUTH AFRICA.

Albatrosses are increasingly drawing attention from the scientific community due to their remarkable flight capabilities. Recent studies suggest that grey-headed albatrosses may be the fastest and most energy-efficient of the albatross species, yet no attempts have been made to replicate their wing design. A key factor in aircraft design is the airfoil, which remains uncharacterized for the grey-headed albatross.

View Article and Find Full Text PDF

Inspired by counterintuitive water "swelling" ability of the hydrophobic moss of the genus Sphagnum (Peat moss), we prepared a hydrophobic pseudo-hydrogel (HPH), composed of a pure hydrophobic silicone elastomer with a tailored porous structure. In contrast to conventional hydrogels, HPH achieves absorption-induced volume expansion through surface tension induced elastocapillarity, presenting an unexpected absorption-induced volume expansion capability in hydrophobic matrices. We adopt a theoretical framework elucidating the interplay of surface tension induced elastocapillarity, providing insights into the absorption-induced volume expansion behavior.

View Article and Find Full Text PDF

Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points.

Nat Commun

January 2025

Institute of Optoelectronic Thin Film Devices and Technology, Key Laboratory of Optoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.

Biological neural systems seamlessly integrate perception and action, a feat not efficiently replicated in current physically separated designs of neural-imitating electronics. This segregation hinders coordination and functionality within the neuromorphic system. Here, we present a flexible device tailored for neuromorphic computation and muscle actuation.

View Article and Find Full Text PDF

Tissues form during development through mechanical compaction of their extracellular matrix (ECM) and shape morphing, processes that result in complex-shaped structures that contribute to tissue function. While observed in vivo, control over these processes in vitro to understand both tissue development and guide tissue formation has remained challenging. Here, we use combinations of mesenchymal stromal cell spheroids and hydrogel microparticles (microgels) with varied hydrolytic stability to fabricate programmable and dynamic granular composites that control compaction and tissue formation over time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!