Objective: The present study aimed to identify various distinguishing features for use in the accurate classification of stereoelectroencephalography (SEEG) channels based on high-frequency oscillations (HFOs) inside and outside the epileptogenic zone (EZ).

Methods: HFOs were detected in patients with focal epilepsy who underwent SEEG. Subsequently, HFOs within the seizure-onset and early spread zones were defined as pathological HFOs, whereas others were defined as physiological. Three features of HFOs were identified at the channel level, namely, morphological repetition, rhythmicity, and phase-amplitude coupling (PAC). A machine-learning (ML) classifier was then built to distinguish two HFO types at the channel level by application of the above-mentioned features, and the contributions were quantified. Further verification of the characteristics and classifier performance was performed in relation to various conscious states, imaging results, EZ location, and surgical outcomes.

Results: Thirty-five patients were included in this study, from whom 166  104 pathological HFOs in 255 channels and 53 374 physiological HFOs in 282 channels were entered into the analysis pipeline. The results revealed that the morphological repetitions of pathological HFOs were markedly higher than those of the physiological HFOs; this was also observed for rhythmicity and PAC. The classifier exhibited high accuracy in differentiating between the two forms of HFOs, as indicated by an area under the curve (AUC) of 0.89. Both PAC and rhythmicity contributed significantly to this distinction. The subgroup analyses supported these findings.

Significance: The suggested HFO features can accurately distinguish between pathological and physiological channels substantially improving its usefulness in clinical localization.

Plain Language Summary: In this study, we computed three quantitative features associated with HFOs in each SEEG channel and then constructed a machine learning-based classifier for the classification of pathological and physiological channels. The classifier performed well in distinguishing the two channel types under different levels of consciousness as well as in terms of imaging results, EZ location, and patient surgical outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11296094PMC
http://dx.doi.org/10.1002/epi4.12950DOI Listing

Publication Analysis

Top Keywords

pathological hfos
12
hfos
11
channels based
8
based high-frequency
8
high-frequency oscillations
8
channel level
8
imaging location
8
physiological hfos
8
pathological physiological
8
physiological channels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!