In recent times, considerable attention has been given to examining the impact of micro/nanostructure on the thermoelectric characteristics of nonstoichiometric AgSbTe. The present investigation employed direct melting of elements that produced p-type AgSbTe with spontaneous nanostructuring due to cation ordering. The product predominantly features an Ag-deficient AgSbTe phase with monoclinic AgTe nanoprecipitates and exhibits a degenerate semiconductor-like behavior with an energy band gap of 0.15 eV. A Seebeck coefficient of 251 μV K and a power factor of 741 μW m K at near ambient temperature are attained with this composition. The variable range hopping (VRH) and linear magnetoresistance (LMR) confirmed that the low-temperature transport followed a VRH between the localized states. The composition also exhibited glass like thermal conductivity of 0.2 W m K arising from phonon scattering at all-scale hierarchical structures that led to a high of 1.1 at room temperature. The direct melted ingots show a high relative density of ∼97%, Vickers hardness of ∼108.5 kgf mm, and excellent thermal stability, making them an attractive choice for TEGs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4cp01171fDOI Listing

Publication Analysis

Top Keywords

low-temperature thermoelectric
4
thermoelectric transport
4
transport study
4
study non-stoichiometric
4
agsbte
4
non-stoichiometric agsbte
4
agsbte times
4
times considerable
4
considerable attention
4
attention examining
4

Similar Publications

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

Stretchable electronics have significant applications in wearable applications. However, the extremely low thermal conductivity of elastic encapsulation hinders heat dissipation, leading to performance degradation. For instance, stretchable thermoelectric devices (TEDs) can be used for skin temperature regulation, but poor thermal management limits their cooling performance.

View Article and Find Full Text PDF

Stereoactive Lone-Pair Manipulation for High Thermoelectric Performance of GeSe-Based Compounds.

ACS Appl Mater Interfaces

January 2025

Hubei Longzhong Laboratory, Wuhan University of Technology, Xiangyang Demonstration Zone, Xiangyang 441000, China.

Materials with high crystallographic symmetry are supposed to be good thermoelectrics because they have high valley degeneracy () and superb carrier mobility (μ). Binary GeSe crystallizes in a low-symmetry orthorhombic structure accompanying the stereoactive 4s lone pairs of Ge. Herein, we rationally modify GeSe into a high-symmetry rhombohedral structure by alloying with GeTe based on the valence-shell electron-pair repulsion theory.

View Article and Find Full Text PDF

Cobalt-based oxides have attracted significant attention as p-type thermoelectric materials due to their wide operational temperature range. However, their low average figure of merit () value has hindered service performance. A series of cation vacancies as Ca-active sites were introduced into CaCoO (0 ≤ ≤ 0.

View Article and Find Full Text PDF

Recently, ionic thermoelectric supercapacitors have gained attention because of their high open circuit voltages, even for ions that are redox inactive. As a source of open circuit voltage (electromotive force), an asymmetry in electric double layers developed by the adsorption of ions at the electrode surfaces kept at different temperatures has previously been proposed. As another source, the Eastman entropy of transfer, which is related to the Soret coefficient, has been considered.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!