An Extendible Realism-Based Ontology for Kinship.

CEUR Workshop Proc

University at Buffalo, 77 Goodell Street, Buffalo NY, 14203, USA.

Published: January 2023

Adequately representing kinship relations is crucial for a variety of medical and biomedical applications. Several kinship ontologies have been proposed but none of them have been designed thus far in line with the Basic Formal Ontology. In this paper, we propose a novel kinship ontology that exhibits the following characteristics: (1) it is fully axiomatized in First Order Logic following the rules governing predicate formation as proposed in BFO2020-FOL, (2) it is modularized in 6 separate files written in the Common Logic Interface Format (CLIF) each one of which can be imported based on specific needs, (3) it provides bridging axioms to and from SNOMED CT, and (4) it contains an extra module with axioms which would not be literally true when phrased naively but are crafted in such a way that they highlight the unusual kinship relations they represent and can be used to generate alerts on possible data entry mistakes. We describe design considerations and challenges encountered.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131162PMC

Publication Analysis

Top Keywords

kinship relations
8
kinship
5
extendible realism-based
4
realism-based ontology
4
ontology kinship
4
kinship adequately
4
adequately representing
4
representing kinship
4
relations crucial
4
crucial variety
4

Similar Publications

Background/objectives: Short tandem repeat (STR) loci are widely used in forensic genetics for identification and kinship analysis. Traditionally, these loci were selected to avoid medical associations, but recent studies suggest that loci such as TH01 and D16S539 may be linked to psychiatric conditions like schizophrenia. This study explores these potential associations and considers the privacy implications related to disease susceptibility.

View Article and Find Full Text PDF

The admixture model is widely applied to estimate and interpret population structure among individuals. Here we consider a "standard admixture" model that assumes the admixed populations are unrelated and also a generalized model, where the admixed populations themselves are related via coancestry (or covariance) of allele frequencies. The generalized model yields a potentially more realistic and substantially more flexible model that we call "super admixture".

View Article and Find Full Text PDF

Y-chromosome short tandem repeats (Y-STRs) loci have significant research and application value in individual identification, parentage testing, kinship determination and genealogical DNA analysis due to their unique genetic characteristics. Currently, various commercial STR typing kits have used in forensic detection, which greatly promoting the scientific application of STR in criminal investigation and judicial trials. However, due to the complexity and specificity of biological samples, the special STR typing in the sample poses certain difficulties for the construction of DNA databases.

View Article and Find Full Text PDF

The Moche archaeological culture flourished along Peru's North Coast between the 4th and 10th centuries CE and was characterized by a complex social hierarchy dominated by political and religious elites. Previous archaeological evidence suggests kinship was a key factor in maintaining political authority within Moche society. To test this hypothesis, we applied archaeological, genetic, and isotopic methods to examine familial relationships between six individuals, including the prominent Señora de Cao (), buried together in a pyramid-like, painted temple, Huaca Cao Viejo, in the Chicama Valley, Peru.

View Article and Find Full Text PDF

Background: Rice, a staple food for over half of the global population, exhibits significant diversity in grain shape characteristics, which impact not only appearance and milling quality but also grain weight and yield. Identifying genes and loci underlying these traits is crucial for improving rice breeding programs. Previous studies have identified multiple quantitative trait loci (QTLs) and genes regulating grain length, width, and length-width ratio; however, further investigation is necessary to elucidate their regulatory pathways and their practical application in crop improvement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!