Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Backgroud: Iron overload is a prevalent condition in the elderly, often associated with various degenerative diseases, including intervertebral disc degeneration (IDD). Nevertheless, the mechanisms responsible for iron ion accumulation in tissues and the mechanism that regulate iron homeostasis remain unclear. Transferrin receptor-1 (TFR1) serves as the primary cellular iron gate, playing a pivotal role in controlling intracellular iron levels, however its involvement in IDD pathogenesis and the underlying mechanism remains obscure.
Methods: Firstly, IDD mice model was established to determine the iron metabolism associated proteins changes during IDD progression. Then CEP chondrocytes were isolated and treated with TBHP or pro-inflammatory cytokines to mimic pathological environment, western blotting, immunofluorescence assay and tissue staining were employed to explore the underlying mechanisms. Lastly, TfR1 siRNA and Feristatin II were employed and the degeneration of IDD was examined using micro-CT and immunohistochemical analysis.
Results: We found that the IDD pathological environment, characterized by oxidative stress and pro-inflammatory cytokines, could enhance iron influx by upregulating TFR1 expression in a HIF-2α dependent manner. Excessive iron accumulation not only induces chondrocytes ferroptosis and exacerbates oxidative stress, but also triggers the innate immune response mediated by c-GAS/STING, by promoting mitochondrial damage and the release of mtDNA. The inhibition of STING through siRNA or the reduction of mtDNA replication using ethidium bromide alleviated the degeneration of CEP chondrocytes induced by iron overload.
Conclusion: Our study systemically explored the role of TFR1 mediated iron homeostasis in IDD and its underlying mechanisms, implying that targeting TFR1 to maintain balanced iron homeostasis could offer a promising therapeutic approach for IDD management.
The Translational Potential Of This Article: Our study demonstrated the close link between iron metabolism dysfunction and IDD, indicated that targeting TfR1 may be a novel therapeutic strategy for IDD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130997 | PMC |
http://dx.doi.org/10.1016/j.jot.2024.03.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!