Background: Osteoporosis is one of the most common bone diseases in middle-aged and elderly populations worldwide. The development of new drugs to treat the disease is a key focus of research. Current treatments for osteoporosis are mainly directed at promoting osteoblasts and inhibiting osteoclasts. However, there is currently no ideal approach for osteoporosis treatment. l-arginine is a semi-essential amino acid involved in a number of cellular processes, including nitric production, protein biosynthesis, and immune responses. We previously reported that l-arginine-derived compounds can play a regulatory role in bone homeostasis.

Purpose: To investigate the specific effect of l-arginine on bone homeostasis.

Methods: Mildly aged and ovariectomized mouse models were used to study the effects of l-arginine on osteogenesis and angiogenesis, assessed by micro-computed tomography and immunostaining of bone tissue. The effect of l-arginine on osteogenesis, angiogenesis, and adipogenesis was further studied in vitro using osteoblasts obtained from cranial cap bone, endothelial cells, and an adipogenic cell line. Specific methods to assess these processes included lipid staining, cell migration, tube-forming, and wound-healing assays. Protein and mRNA expression was determined for select biomarkers.

Results: We found that l-arginine attenuated bone loss and promoted osteogenesis and angiogenesis. l-arginine increased the activity of vascular endothelial cells, whereas it inhibited adipogenesis in vitro. In addition, we found that l-arginine altered the expression of PINK1/Parkin and Bnip3 in the mitochondria of osteoblast-lineage and endothelial cells, thereby promoting mitophagy and protecting cells from ROS. Similarly, l-arginine treatment effectively ameliorated osteoporosis in an ovariectomized mouse model.

Conclusion: l-arginine promotes angio-osteogenesis, and inhibits adipogenesis, effects mediated by the PINK1/Parkin- and Bnip3-mediated mitophagy.

The Translational Potential Of This Article: L-arginine supplementation may be an effective adjunct therapy in the treatment of osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11131000PMC
http://dx.doi.org/10.1016/j.jot.2024.03.003DOI Listing

Publication Analysis

Top Keywords

osteogenesis angiogenesis
12
endothelial cells
12
l-arginine
11
l-arginine promotes
8
promotes angio-osteogenesis
8
ovariectomized mouse
8
l-arginine osteogenesis
8
bone
7
osteoporosis
5
angio-osteogenesis enhance
4

Similar Publications

Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration.

Adv Sci (Weinh)

January 2025

Medical 3D Printing Center, Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Basic Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Stem cell implantation holds promise for enhancing bone repair, but risks of pathogen transmission and malignant cell transformation should not be ignored. Compared to stem cell implantation, recruitment of endogenous stem cells to injured sites is more critical for in situ bone regeneration. In this study, based on the acidic microenvironment of bone injury, an HG-AA-SDF-1α composite hydrogel with a dual-control intelligent switch function is developed by incorporating stromal cell-derived factor (SDF-1α), arginine carbon dots (Arg-CDs), and calcium ions (Ca) into the oxidized hyaluronic acid/gelatin methacryloyl (HG) hydrogel.

View Article and Find Full Text PDF

Limb lengthening and deformity correction techniques, particularly distraction osteogenesis, have significantly evolved in pediatric orthopedics. This study examines the temporal changes of key biochemical markers-vascular endothelial growth factor (VEGF), fibroblast growth factor 1 (FGF-1), and the propeptide of type I collagen (P1NP)-during the limb lengthening process. Twenty pediatric patients (aged 13-16) underwent distraction osteogenesis using the Circular Hexapod External Fixator.

View Article and Find Full Text PDF

Icariin (ICA) serves as the primary biologically active compound in traditional Chinese medicine Epimedium, while Icariside II (ICSII) represents one of its gastrointestinal metabolites. Although ICA and ICSII have demonstrated osteogenic differentiation- promoting effects on BMSCs, there is limited literature comparing their effects and underlying mechanisms. This study aimed to compare the osteogenic effects of Icariin and Icariside II, along with their respective osteogenic mechanisms.

View Article and Find Full Text PDF

The Biological Properties of Co-Doped Monetite Are Influenced by Thermal Treatment.

J Biomed Mater Res B Appl Biomater

February 2025

Bioassays and Cellular Dynamics Lab, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP: São Paulo State University, São Paulo, Brazil.

Calcium phosphates, notably monetite, are valued biomaterials for bone applications owing to their osteogenic properties and rapid uptake by bone cells. This study investigates the enhancement of these properties through Cobalt doping, which is known to induce hypoxia and promote bone cell differentiation. Heat treatments at 700°C, 900°C, and 1050°C are applied to both monetite and Cobalt-doped monetite, facilitating the development of purer, more crystalline phases with varied particle sizes and optimized cellular responses.

View Article and Find Full Text PDF

The porous structure is crucial in bone tissue engineering for promoting osseointegration. Among various structures, triply periodic minimal surfaces (TPMS) -Gyroid has been extensively studied due to its superior mechanical and biological properties. However, previous studies have given limited attention to the impact of unit cell size on the biological performance of scaffolds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!