Water-soluble dipyridinium thiazolo[5,4-]thiazole (TTz) compounds are incorporated into inexpensive poly(vinyl alcohol) (PVA)/borax films and exhibit fast (<1 s), high-contrast photochromism, photofluorochromism, and oxygen sensing. Under illumination, the films change from clear/yellow TTz to purple TTz and then blue TTz. The contrast and speed of the photochromism are dependent on the polymer matrix redox properties and the concentration of TTz. The photoreduced films exhibit strong, near-infrared light (1000-1500 nm) absorbances in addition to visible color changes. Spectroscopic ellipsometry was used to establish the complex dielectric function for the TTz and TTz states. Incorporating non-photochromic dyes yields yellow-to-green and pink-to-purple photochromism. Additionally, when illuminated, reversible photoactuation occurs, causing mechanical contraction in the TTz-embedded films. The blue film returns to its colorless state via exposure to O, making the films able to sense oxygen and leak direction for smart packaging. These films show potential for use in self-tinting smart windows, eyeglasses, displays, erasable memory devices, fiber optic communication, and oxygen sensing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129348 | PMC |
http://dx.doi.org/10.1021/acsaom.4c00014 | DOI Listing |
Sci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.
The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Computer Science and Digital Technologies, University of East London, London, UK.
Nursing activity recognition has immense importance in the development of smart healthcare management and is an extremely challenging area of research in human activity recognition. The main reasons are an extreme class-imbalance problem and intra-class variability depending on both the subject and the recipient. In this paper, we apply a unique two-step feature extraction, coupled with an intermediate feature 'Angle' and a new feature called mean min max sum to render the features robust against intra-class variation.
View Article and Find Full Text PDFSci Rep
December 2024
The Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237, China.
Semantic segmentation is essential for comprehending images, but the process necessitates a substantial amount of detailed annotations at the pixel level. Acquiring such annotations can be costly in the real-world. Unsupervised domain adaptation (UDA) for semantic segmentation is a technique that uses virtual data with labels to train a model and adapts it to real data without labels.
View Article and Find Full Text PDFNat Commun
December 2024
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
Coordination complexes are promising candidates for powerful electrocatalytic oxygen evolution reaction but challenges remain in favoring the kinetics behaviors through local coordination regulation. Herein, by refining the synergy of carboxylate anions and multiconjugated benzimidazole ligands, we tailor a series of well-defined and stable coordination complexes with three-dimensional supramolecular/coordinated structures. The coordinated water as potential open coordination sites can directly become intermediates, while the metal center easily achieves re-coordination with water molecules in the pores to resist lattice oxygen dissolution.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, China.
Small-scale continuum robots hold promise for interventional diagnosis and treatment, yet existing models struggle to achieve small size, precise steering, and visualized functional treatment simultaneously, termed an "impossible trinity". This study introduces an optical fiber-based continuum robot integrated imaging, high-precision motion, and multifunctional operation abilities at submillimeter-scale. With a slim profile of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!