The effects of cross-processing lingonberry press cake (LPC) (2.5-30 %, dw/dw) with herring co-products on protein yield, oxidative stability and color of pH-shift-produced protein isolates were investigated. Even at 2.5 % LPC, the formation of volatile oxidation-derived aldehydes, including hexanal, (E)-2-hexenal, heptanal, octanal, and 2,4-heptadienal, were prevented during the actual protein isolate production. Adding 10 % LPC successfully prevented formation of all these aldehydes also during eight days ice storage which was explained by the partitioning of phenolics, especially ideain (1.09 mg/g dw) and procyanidin A1 (65.5 mg/g dw), into isolates. Although higher amounts of LPC (20-30 %) further prolonged the oxidation lag phase, it reduced total protein yield, increased the consumption of acid and base, and darkened protein isolates. Therefore, it is recommended to use 10 % LPC when pH-shift-processing sensitive fish raw materials as a route to mitigate lipid oxidation and at the same time promote industrial symbiosis and more circular food production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130683 | PMC |
http://dx.doi.org/10.1016/j.fochx.2024.101456 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!