A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unveiling the anti-echinococcal efficacy of amide-based compounds: An and study. | LitMetric

Cystic echinococcosis (CE) is a significant global public health concern, particularly in regions where livestock rearing is prevalent. Despite its impact on morbidity and mortality, CE has received insufficient attention compared to other neglected tropical diseases. The complexities in CE management arise from challenges in early detection, effective treatment, and parasite eradication. The present study addresses this gap by exploring innovative therapeutic approaches using amide-based compounds. In recent years, computational approaches and studies have become prominent in neglected tropical disease drug discovery. Leveraging insights from previous studies on amide-based compounds with anti-parasitic potential, this study systematically designed, synthesized, and characterized a library of 30 amide compounds. The research integrated screening, molecular docking, and experimentation to assess the anti-echinococcal potential of these compounds. The study identified five promising amide compounds, namely 3,5-dinitro-N-p-tolylbenzamide, N-p-tolyl-1-naphthamide, N-p-tolyl-4-(trifluoromethoxy)benzamide, 4-pentyl-N-p-tolylbenzamide, and 2,3,4,5,6-pentafluoro-N-p-tolylbenzamide, based on their docking scores. These compounds were synthesized and characterized through various spectroscopic techniques, confirming their structural integrity. The cytotoxicity assay on HepG2 cell lines revealed varying degrees of cytotoxicity for the synthesized compounds. Notably, 4-pentyl-N-p-tolylbenzamide demonstrated the least cytotoxicity. Subsequent scolicidal activity assessments on protoscoleces demonstrated the potent protoscolicidal activity of N-p-tolyl-1-naphthamide, indicating its potential as an effective anti-echinococcal agent. Overall, this study presents a comprehensive exploration of amide-based compounds as potential therapeutic agents against CE. The findings contribute to the development of innovative strategies for CE treatment, addressing the urgent need for effective and safe drugs in managing this neglected tropical disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130662PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e31205DOI Listing

Publication Analysis

Top Keywords

amide-based compounds
16
neglected tropical
12
compounds
9
compounds study
8
tropical disease
8
synthesized characterized
8
amide compounds
8
study
5
unveiling anti-echinococcal
4
anti-echinococcal efficacy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!