Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background The quest for an ideal bone grafting material has been ongoing for decades. Calcium phosphate, alone or in combination with other materials in natural bone, has been shown to aid in bone regeneration effectively. Monetite exhibits superior solubility and resorption rates among calcium phosphates, rendering it an optimal choice for bone regeneration applications. However, the degradation rate of the Monetite is much faster than that of all the other calcium phosphates. Hence, we have added Europium onto the matrix to alter the degradation profile and enhance the osteogenic ability of the prepared matrix. Materials and methods An exclusive Europium-Monetite composite was synthesized employing eco-friendly techniques involving The osteogenic potential was gauged using the MG-63 cell line through a calcium mineralization assay employing an Alizarin Red solution, collagen estimation, and an alkaline phosphatase (ALP) assay. The composite's cytocompatibility was evaluated using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay across different concentrations ranging from 12.5 µg to 100 µg. Results Scanning electron microscopy (SEM) analysis of the Europium-Monetite composite revealed a sheet-like arrangement in stacks, and the ATR-IR confirmed the presence of elements Ca, P, and Eu. The osteogenic potential, analyzed by ALP activity, calcium mineralization, and collagen staining, was 10% higher than that of the control (Monetite). Conclusion The prepared novel Europium-Monetite calcium phosphate complex can enhance the osteogenic potential and could be a promising material for bone regeneration/tissue engineering. The newly created Europium-Monetite calcium phosphate complex holds promise for various bone grafting applications, including integration into scaffolds and as a coating for implants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11130533 | PMC |
http://dx.doi.org/10.7759/cureus.59202 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!