X-ray photoelectron spectroscopy (XPS) is one of the most common techniques used to analyze the surface composition of catalysts and support materials used in polymer electrolyte membrane (PEM) fuel cells and electrolyzers, providing important insights for further improvement of their properties. Characterization of catalyst layers (CLs) is more challenging, which can be at least partially attributed to the instability of ionomer materials such as Nafion during measurements. This work explores the stability of Nafion during XPS measurements, illuminating and addressing Nafion degradation concerns. The extent of Nafion damage as a function of XPS instrumentation, measurement conditions, and sample properties was evaluated across multiple instruments. Results revealed that significant Nafion damage to the ion-conducting sulfonic acid species (>50% loss in sulfur signal) may occur in a relatively short time frame (tens of minutes) depending on the exact nature of the sample and XPS instrument. This motivated the development and validation of a multipoint XPS data acquisition protocol that minimizes Nafion damage, resulting in reliable data acquisition by avoiding significant artifacts from Nafion instability. The developed protocol was then used to analyze both thin film ionomer samples and Pt/C-based CLs. Comparison of PEM fuel cell CLs to Nafion thin films revealed several changes in Nafion spectral features attributed to charge transfer due to interaction with conductive catalyst and support species. This study provides a method to reliably characterize ionomer-containing samples, facilitating fundamental studies of the catalyst-ionomer interface and more applied investigations of structure-processing-performance correlations in PEM fuel cell and electrolyzer CLs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129293PMC
http://dx.doi.org/10.1021/acs.jpcc.4c00872DOI Listing

Publication Analysis

Top Keywords

pem fuel
12
nafion damage
12
nafion
9
x-ray photoelectron
8
photoelectron spectroscopy
8
data acquisition
8
fuel cell
8
xps
5
spectroscopy analysis
4
analysis nafion-containing
4

Similar Publications

Fabrication and Coating of Porous Ti6Al4V Structures for Application in PEM Fuel Cell and Electrolyzer Technologies.

Materials (Basel)

December 2024

Department of Material Science and Engineering, Universidad Carlos III de Madrid, IAAB, 28911 Leganés, Madrid, Spain.

The production of green hydrogen through proton exchange membrane water electrolysis (PEMWE) is a promising technology for industry decarbonization, outperforming alkaline water electrolysis (AWE). However, PEMWE requires significant investment, which can be mitigated through material and design advancements. Components like bipolar porous plates (BPPs) and porous transport films (PTFs) contribute substantially to costs and performance.

View Article and Find Full Text PDF

Enhancing Carbon Monoxide Tolerance in Low-Temperature PEM Fuel Cells through Carbon Nitride Surface Modification.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

Article Synopsis
  • Low-temperature proton exchange membrane fuel cells (PEMFCs) need very pure hydrogen gas because they are highly sensitive to carbon monoxide (CO) contamination.
  • A surface modification technique was developed, applying a 0.5-0.91 nm amorphous carbon nitride layer on PtRu/C substrates, improving hydrogen transport while blocking CO diffusion.
  • This modification significantly reduces CO adsorption, maintaining stable catalyst operation for over 20 hours even with high CO levels (1000 ppm), and allows stable performance in PEMFCs with CO concentrations up to 10 ppm, surpassing the standard limit of 0.2 ppm.
View Article and Find Full Text PDF

Hydrogen-based electric vehicles such as Fuel Cell Electric Vehicles (FCHEVs) play an important role in producing zero carbon emissions and in reducing the pressure from the fuel economy crisis, simultaneously. This paper aims to address the energy management design for various performance metrics, such as power tracking and system accuracy, fuel cell lifetime, battery lifetime, and reduction of transient and peak current on Polymer Electrolyte Membrane Fuel Cell (PEMFC) and Li-ion batteries. The proposed algorithm includes a combination of reinforcement learning algorithms in low-level control loops and high-level supervisory control based on fuzzy logic load sharing, which is implemented in the system under consideration.

View Article and Find Full Text PDF

Proton exchange membrane (PEM) electrolysis faces challenges associated with high overpotential and acidic environments, which pose significant hurdles in developing highly active and durable electrocatalysts for the oxygen evolution reaction (OER). Ir-based nanomaterials are considered promising OER catalysts for PEM due to their favorable intrinsic activity and stability under acidic conditions. However, their high cost and limited availability pose significant limitations.

View Article and Find Full Text PDF

Simulation and experimental study of local high frequency resistance distribution in proton exchange membrane fuel cells under steady and dynamic conditions.

Heliyon

December 2024

Fuel Cell System and Engineering Laboratory, Key Laboratory of Fuel Cells & Hybrid Power Sources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China.

Proton-exchange membrane (PEM) dry-wet variation during PEM fuel cell (PEMFC) operation markedly affects PEMFC lifespan. Therefore, deeper insights into the mechanical degradation mechanism of PEM require analysis of the membrane dry-wet change process. The stress changes caused by PEM dry-wet variations may induce mechanical failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!