Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cardiac hypertrophy characterized by abnormal cardiomyocyte viscosity is a typical sign of heart failure (HF) with vital importance for early diagnosis. However, current biochemical and imaging diagnostic methods are unable to detect this subclinical manifestation. In this work, we developed a series of NIR-I fluorescence probes for detecting myocardial viscosity based on the pyridazinone scaffold. The probes showed weak fluorescence due to free intramolecular rotation under low-viscosity conditions, while they displayed strong fluorescence with limited intramolecular rotation in response to a high-viscosity environment. Among them, exhibited higher stability and photobleaching resistance than commercial dyes. Its specific response to viscosity was not influenced by the pH and biological species. Furthermore, showed rapid and accurate responses to the viscosity of isoproterenol (ISO)-treated H9C2 cardiomyocytes with good biocompatibility. More importantly, demonstrated excellent sensitivity in monitoring myocardial viscosity variation in HF mice in vivo, potentially enabling earlier noninvasive identification of myocardial abnormalities compared to traditional clinical imaging and biomarkers. These findings revealed that can serve as a powerful tool to monitor myocardial viscosity, providing the potential to advance insights into a pathophysiological mechanism and offering a new reference strategy for early visual diagnosis of HF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c00258 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!