The development of robust and reliable methods for the construction of C(sp)-C(sp) bonds is vital for accessing an increased array of structurally diverse scaffolds in drug discovery and development campaigns. While significant advances towards this goal have been achieved using metallaphotoredox chemistry, many of these methods utilise photocatalysts based on precious-metals due to their efficient redox processes and tuneable properties. However, due to the cost, scarcity, and toxicity of these metals, the search for suitable replacements should be a priority. Here, we show the use of commercially available heterogeneous semiconductor graphitic carbon nitride (gCN) as a photocatalyst, combined with nickel catalysis, for the cross-coupling between aryl halide and carboxylic acid coupling partners. gCN has been shown to engage in single-electron-transfer (SET) and energy-transfer (EnT) processes for the formation of C-X bonds, and in this manuscript we overcome previous limitations to furnish C-C over C-O bonds using carboxylic acids. A broad scope of both aryl halides and carboxylic acids is presented, and recycling of the photocatalyst demonstrated. The mechanism of the reaction is also investigated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202405902 | DOI Listing |
Polymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
College of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
In this paper, alumina-modified wood liquefaction (AL-WP) was prepared by blending nano-alumina (AlO) into wood liquefaction phenolic resin (WP) using a co-blending method. Alumina-modified wood liquefaction protofilament fiber (AL-WPF) was obtained by melt-spinning, curing, and thermo-curing processes, which were followed by carbonization to obtain alumina-modified wood liquefaction carbon fiber (AL-WCF). This paper focuses on the enhancement effect of nano-alumina doping on the mechanical properties and heat resistance of wood liquefaction carbon fiber (WCF), explores the evolution of graphite microcrystalline structure during the high-temperature carbonization process, and optimizes the curing conditions of AL-WPF.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemistry, Middle Tennessee State University, 440 Friendship Street, Murfreesboro, TN 37132, USA.
Elevated dopamine (DA) levels in urine denote neuroblastoma, a pediatric cancer. Saccharide-derived carbon dots (CDs) were applied to assay DA detection in simulated urine (SU) while delineating the effects of graphene defect density on electrocatalytic activity. CDs were hydrothermally synthesized to vary graphene defect densities using sucrose, raffinose, and palatinose, depositing them onto glassy carbon electrodes (GCEs).
View Article and Find Full Text PDFMolecules
January 2025
Department of Physical Chemistry, Plovdiv University "Paisii Hilendarski", 24, Tzar Assen Str., 4000 Plovdiv, Bulgaria.
Lipid peroxidation is a major process that determines the quality of various oil samples during their use and storage, in which the primary products are hydroperoxides (HP'). HP' are very stable compounds at ambient conditions and are harmful to human health. Therefore, the evaluation of the degree of oil oxidation is an excellent tool for ensuring food safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!