Background: Myocardial infarction (MI) is an acute condition in which the heart muscle dies due to the lack of blood supply. Previous research has suggested that autophagy and angiogenesis play vital roles in the prevention of heart failure after MI, and miR-106a is considered to be an important regulatory factor in MI. But the specific mechanism remains unknown. In this study, using cultured venous endothelial cells and a rat model of MI, we aimed to identify the potential target genes of miR-106a and discover the mechanisms of inhibiting autophagy and angiogenesis.
Methods: We first explored the biological functions of miR-106a on autophagy and angiogenesis on endothelial cells. Then we identified ATG7, which was the downstream target gene of miR-106a. The expression of miR-106a and ATG7 was investigated in the rat model of MI.
Results: We found that miR-106a inhibits the proliferation, cell cycle, autophagy and angiogenesis, but promoted the apoptosis of vein endothelial cells. Moreover, ATG7 was identified as the target of miR-106a, and ATG7 rescued the inhibition of autophagy and angiogenesis by miR-106a. The expression of miR-106a in the rat model of MI was decreased but the expression of ATG7 was increased in the infarction areas.
Conclusion: Our results indicate that miR-106a may inhibit autophagy and angiogenesis by targeting ATG7. This mechanism may be a potential therapeutic treatment for MI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11369033 | PMC |
http://dx.doi.org/10.1002/ame2.12418 | DOI Listing |
Antibiotics (Basel)
December 2024
Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
Cancer persists as a significant global health challenge, claiming millions of lives annually despite remarkable strides in therapeutic innovation. Challenges such as drug resistance, toxicity, and suboptimal efficacy underscore the need for novel treatment paradigms. In this context, the repurposing of antibiotics as anti-cancer agents has emerged as an attractive prospect for investigation.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biochemistry, College of Medicine, Shihezi University, Shihezi, Xinjiang, China.
Long non-coding RNAs (lncRNAs) are among the most abundant types of non-coding RNAs in the genome and exhibit particularly high expression levels in the brain, where they play crucial roles in various neurophysiological and neuropathological processes. Although ischemic stroke is a complex multifactorial disease, the involvement of brain-derived lncRNAs in its intricate regulatory networks remains inadequately understood. In this study, we established a cerebral ischemia-reperfusion injury model using middle cerebral artery occlusion (MCAO) in male Sprague-Dawley rats.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
January 2025
"Roumen Tsanev" Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria. Electronic address:
High-mobility group box 1 (HMGB1) is a highly conserved nuclear protein involved in key nuclear processes such as DNA repair, replication, and gene regulation. Beyond its established nuclear roles, HMGB1 has crucial functions in the cytoplasm and extracellular environment. When translocated to the cytoplasm, HMGB1 plays a role in autophagy, cell survival, and immune response modulation.
View Article and Find Full Text PDFMol Metab
January 2025
Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Alabama at Birmingham, Birmingham, AL 35294, USA; UAB Comprehensive Diabetes Center, USA. Electronic address:
Objective: Obesity-associated metabolic dysfunction is a major public health concern worldwide. Endothelial dysfunction is a hallmark of metabolic dysfunction, and endothelial cells affect metabolic functions. Because autophagy-related gene 7 (ATG7) is involved in various cellular physiology, we investigated the roles of endothelial cell-ATG7 (EC-ATG7) on high-fat diet-induced obesity and its related metabolic dysfunction.
View Article and Find Full Text PDFAnal Cell Pathol (Amst)
January 2025
Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China.
Fibroblasts play a crucial role in diabetic wound healing, and their senescence is the cause of delayed wound repair. It was reported that fibroblasts can secrete exosomes that can mediate a vital role in diabetic complications. Our purpose is to examine the biological function of high glucose (HG)-induced senescent fibroblasts from the perspective of exosomes and reveal the mechanism at cellular and animal levels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!