Background: Embryo implantation remains a critical barrier in assisted reproductive technologies. One of the main causes of unsuccessful embryo implantation is window of implantation (WOI) displacement, particularly in patients with recurrent implantation failure (RIF). Therefore, a reliable diagnostic tool for identifying the optimal WOI is essential. Previous data has suggested that a novel RNA-Seq-based endometrial receptivity testing (ERT) can diagnose WOI, guide personalized embryo transfer (pET), and improve pregnancy outcomes in patients with RIF compared to standard embryo transfer (sET). However, there is still a lack of evidence from randomized controlled trials (RCT) with sufficient power to determine whether pET based on ERT can increase the rate of live births as the primary outcome.

Methods: This trial is a prospective, single-blind, parallel-group RCT (1:1 ratio of pET versus sET). Infertile women with RIF who intend to undergo frozen-thawed embryo transfer (FET) after preimplantation genetic testing for aneuploidy (PGT-A) with the availability of at least one euploid blastocyst for transfer will be enrolled and assigned into two parallel groups randomly. Participants in the intervention group will undergo ERT and then pET based on the results of ERT, while those in the control group will undergo sET. The primary outcome is live birth rate.

Discussion: The findings of this study will provide evidence for the effect of pET guided by ERT on pregnancy outcomes in patients with RIF.

Trial Registration: Chinese Clinical Trial Registry ChiCTR2100049041. Registered on 20 July 2021.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134766PMC
http://dx.doi.org/10.1186/s13063-024-08125-6DOI Listing

Publication Analysis

Top Keywords

embryo transfer
12
endometrial receptivity
8
receptivity testing
8
recurrent implantation
8
implantation failure
8
randomized controlled
8
embryo implantation
8
pregnancy outcomes
8
outcomes patients
8
pet based
8

Similar Publications

This document aims to provide good practice recommendations in order to support maternal-foetal medicine specialists, clinical geneticists and clinical laboratory geneticists in the management of pregnancies obtained after the transfer of an embryo tested with preimplantation genetic testing (PGT). It was drafted by geneticists expert in preimplantation genetics and prenatal genetic diagnosis belonging to the "Working Group in Cytogenomics, Prenatal and Reproductive Genetics" of the "Italian Society of Human Genetics" (SIGU). In particular, the paper addresses the diagnostic algorithm to be applied in prenatal follow-up depending on the type of PGT performed, the results obtained and the related diagnostic value based on the most recent literature data and Italian and international recommendations.

View Article and Find Full Text PDF

Optimal embryonic development depends upon cell-signaling molecules released by the maternal reproductive tract called embryokines. Identity of specific embryokines that enhance competence of the embryo for sustained survival is largely lacking. The current objective was to evaluate effects of three putative embryokines in cattle on embryonic development to the blastocyst stage.

View Article and Find Full Text PDF

Background: The oocyte retrieval is a critical step in assisted reproductive technologies, including in vitro fertilization and fertility preservation. Despite evolving techniques, the optimal aspiration pressure during retrieval remains debatable, with limited in vivo human studies. Existing studies, primarily in vitro and on animals, suggest that inappropriate aspiration pressures can impair oocyte quality.

View Article and Find Full Text PDF

Melatonin is a pineal hormone synthesized exclusively at night, in several organisms. Its action on sperm is of particular interest, since they transfer genetic and epigenetic information to the offspring, including microRNAs, configuring a mechanism of paternal epigenetic inheritance. MicroRNAs are known to participate in a wide variety of mechanisms in basically all cells and tissues, including the brain and the sperm cells, which are known, respectively, to present 70% of all identified microRNAs and to transfer these molecules to the embryo.

View Article and Find Full Text PDF

Correlation among blastocoel fluid DNA level, apoptotic genes expression and preimplantation aneuploidy.

Reprod Fertil

January 2025

M Bazrgar, Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran., Tehran, Iran (the Islamic Republic of).

It is believed that aneuploid embryos release cell-free DNA (cfDNA) into the blastocyst cavity during the self-correction process through the apoptotic mechanism. This study aimed to develop less invasive methods for predicting ploidy status by investigating how ploidy status affects blastocoel fluid DNA (BF-DNA) levels and apoptotic gene expression as indicators of embryo viability. Human blastocysts were classified into three groups; Survivable Embryo (SE), Fatal Single and double Aneuploidy (FSDA), and Multiple Aneuploidy (MA) using array comparative genomic hybridization (array-CGH) by trophectoderm (TE) biopsy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!