Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Aspergillus tubingensis is a citric acid-producing fungus that can utilize sugars in hydrolysate of lignocellulosic biomass such as sugarcane bagasse and, unlike A. niger, does not produce mycotoxins. To date, no attempt has been made to model its metabolism at genome scale.
Results: Here, we utilized the whole-genome sequence (34.96 Mb length) and the measured biomass composition to reconstruct a genome-scale metabolic model (GSMM) of A. tubingensis DJU120 strain. The model, named iMK1652, consists of 1652 genes, 1657 metabolites and 2039 reactions distributed over four cellular compartments. The model has been extensively curated manually. This included removal of dead-end metabolites and generic reactions, addition of secondary metabolite pathways and several transporters. Several mycotoxin synthesis pathways were either absent or incomplete in the genome, providing a genomic basis for the non-toxinogenic nature of this species. The model was further refined based on the experimental phenotypic microarray (Biolog) data. The model closely captured DJU120 fermentative data on glucose, xylose, and phosphate consumption, as well as citric acid and biomass production, showing its applicability to capture citric acid fermentation of lignocellulosic biomass hydrolysate.
Conclusions: The model offers a framework to conduct metabolic systems biology investigations and can act as a scaffold for integrative modelling of A. tubingensis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134751 | PMC |
http://dx.doi.org/10.1186/s13068-024-02506-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!