Background: The optimal treatment modality for upper lumbar disc herniation remains unclear. Herein, we compared the clinical efficacy and application value of minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) and transforaminal lumbar interbody fusion (TLIF) for upper lumbar disc herniation. We aimed to provide new evidence to guide surgical decisions for treating this condition.
Methods: We retrospectively analyzed the clinical data of 81 patients with upper lumbar disc herniation admitted between January 2017 and July 2018, including 41 and 40 patients who underwent MIS-TLIF and TLIF, respectively. Demographic characteristics, preoperative functional scores, perioperative indicators, and postoperative complications were compared. We performed consecutive comparisons of visual analog scale (VAS) scores of the lumbar and leg regions, Oswestry disability index (ODI), Japanese Orthopaedic Association scores (JOA), and MacNab scores at the final follow-up, to assess clinical outcomes 5 years postoperatively.
Results: VAS scores of the back and legs were significantly lower in the MIS-TLIF than the TLIF group at 3 months and 1 year postoperatively (P < 0.05). Intraoperative bleeding and postoperative hospitalization time were significantly lower, and the time to return to work/normal life was shorter in the MIS-TLIF than in the TLIF group (P < 0.05). The differences in JOA scores and ODI scores between the two groups at 3 months, 1 year, and 3 years postoperatively were statistically significant (P < 0.05).
Conclusion: The early clinical efficacy of MIS-TLIF was superior to that of TLIF, but no differences were found in mid-term clinical efficacy. Further, MIS-TLIF has the advantages of fewer medical injuries, shorter hospitalization times, and faster postoperative functional recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11134683 | PMC |
http://dx.doi.org/10.1186/s13018-024-04806-9 | DOI Listing |
J Clin Med
January 2025
IRCCS Istituto Ortopedico Galeazzi, 20157 Milan, Italy.
While the importance of the upper and lower limbs in locomotion is well understood, the kinematics of the trunk during walking remains largely unexplored. Two decades ago, a casual observation was reported indicating spine lengthening in a small sample of mostly children during walking, but this observation was never replicated. Objectives: This study aims to verify the preliminary observation that spine lengthening occurs during walking and to explore changes in spine kinematics across three different age groups.
View Article and Find Full Text PDFJ Neurosurg Spine
January 2025
15Department of Neurological Surgery, University of California, San Francisco, California.
Objective: The goal of this study was to compare the impact of using a lower thoracic (LT) versus upper lumbar (UL) level as the upper instrumented vertebra (UIV) on clinical and radiographic outcomes following minimally invasive surgery for adult spinal deformity.
Methods: A multicenter retrospective study design was used. Inclusion criteria were age ≥ 18 years, and one of the following: coronal Cobb angle > 20°, sagittal vertical axis > 50 mm, pelvic tilt > 20°, pelvic incidence-lumbar lordosis mismatch > 10°.
Clin Neurol Neurosurg
January 2025
Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA.
Objective: The purpose of this study was to evaluate the risk factors for loss of intraoperative correction, as measured by lumbar lordosis (LL), with an emphasis on rod characteristics.
Methods: A retrospective study identified patients at least 50 years of age who underwent instrumented fusion with an upper instrumented vertebrae (UIV) in the upper thoracic spine (T1-T6) or thoracolumbar junction (T10-L2) to the pelvis. Inclusion criteria included intraoperative x-rays that allowed for LL measurement, postop standing x-rays, and a minimum follow up of 24 months with the original rods still in place.
J Neuroeng Rehabil
January 2025
Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
Background: Motion complexity is necessary for adapting to external changes, but little is known about trunk motion complexity during seated perturbation in individuals with spinal cord injury (SCI). We aimed to investigate changes following SCI in trunk segmental motion complexity across different perturbation directions and how they affect postural control ability in individuals with SCI.
Methods: A total of 17 individuals with SCI and 18 healthy controls participated in challenging sagittal-seated perturbations with hand protection.
J Neurol
January 2025
Department of Neurology, University Hospital Basel, University of Basel, Basel, Switzerland.
Background: With the approval of disease-modifying treatments for 5q-spinal muscular atrophy (SMA), there is an increasing need for biomarkers for disease course and therapeutic response monitoring. Radially sampled Averaged Magnetization Inversion Recovery Acquisitions (rAMIRA) MR-imaging enables spinal cord (SC) gray matter (GM) delineation and quantification in vivo. This study aims to assess SC GM atrophy in patients with 5q-SMA and its associations with clinical disability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!