AI Article Synopsis

  • Soil contamination, land desertification, and cracking concrete pose serious threats to sustainable economic and social development.
  • Microbially induced carbonate precipitation (MICP) offers an innovative and cost-effective solution for remediating these issues by enhancing soil stability and repairing concrete.
  • While MICP shows great potential for environmental restoration, challenges such as environmental fluctuations and the need for further research on efficiency and field applications still exist.

Article Abstract

Soil contamination, land desertification and concrete cracking can have significant adverse impacts on sustainable human economic and societal development. Cost-effective and environmentally friendly approaches are recommended to resolve these issues. Microbially induced carbonate precipitation (MICP) is an innovative, attractive and cost-effective in situ biotechnology with high potential for remediation of polluted or desertified soils/lands and cracked concrete and has attracted widespread attention in recent years. Accordingly, the principles of MICP technology and its applications in the remediation of heavy metal-contaminated and desertified soils and self-healing of concrete were reviewed in this study. The production of carbonate mineral precipitates during the MICP process can effectively reduce the mobility of heavy metals in soils, improve the cohesion of dispersed sands and realize self-healing of cracks in concrete. Moreover, CO can be fixed during MICP, which can facilitate carbon neutrality and contribute to global warming mitigation. Overall, MICP technology exhibits great promise in environmental restoration and construction engineering applications, despite some challenges remaining in its large-scale implementation, such as the substantial impacts of fluctuating environmental factors on microbial activity and MICP efficacy. Several methods, such as the use of natural materials or wastes as nutrient and calcium sources and isolation of bacterial strains with strong resistance to harsh environmental conditions, are employed to improve the remediation performance of MICP. However, more studies on the efficiency enhancement, mechanism exploration and field-scale applications of MICP are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-33824-7DOI Listing

Publication Analysis

Top Keywords

micp
9
microbially induced
8
carbonate precipitation
8
precipitation micp
8
micp process
8
environmental restoration
8
facilitate carbon
8
carbon neutrality
8
micp technology
8
concrete
5

Similar Publications

Meta-omics reveals role of photosynthesis in microbially induced carbonate precipitation at a CO-rich geyser.

ISME Commun

January 2024

Department of Plant and Microbial Biology, North Carolina State University, 112 Derieux Place, Thomas Hall, Raleigh, NC 27607, United States.

Microbially induced carbonate precipitation (MICP) is a natural process with potential biotechnological applications to address both carbon sequestration and sustainable construction needs. However, our understanding of the microbial processes involved in MICP is limited to a few well-researched pathways such as ureolytic hydrolysis. To expand our knowledge of MICP, we conducted an omics-based study on sedimentary communities from travertine around the CO-driven Crystal Geyser near Green River, Utah.

View Article and Find Full Text PDF

Enhanced MICP for Soil Improvement and Heavy Metal Remediation: Insights from Landfill Leachate-Derived Ureolytic Bacterial Consortium.

Microorganisms

January 2025

Key Laboratory of Meteorological Disaster, Ministry of Education (KLME)/Joint International Research Laboratory of Climate and Environmental Change (ILCEC)/Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China.

This study investigates the potential of microbial-induced calcium carbonate precipitation (MICP) for soil stabilization and heavy metal immobilization, utilizing landfill leachate-derived ureolytic consortium. Experimental conditions identified yeast extract-based media as most effective for bacterial growth, urease activity, and calcite formation compared to nutrient broth and brown sugar media. Optimal MICP conditions, at pH 8-9 and 30 °C, supported the most efficient biomineralization.

View Article and Find Full Text PDF

Bioremediation of Heavy Metal-Contaminated Solution and Aged Refuse by Microbially Induced Calcium Carbonate Precipitation: Further Insights into .

Microorganisms

January 2025

Shandong Provincial Key Laboratory of Depositional Mineralization and Sedimentary Minerals, College of Earth Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

Recently, the ability of microbial-induced calcium carbonate precipitation (MICP) to remediate heavy metals has been widely explored. was selected to remediate heavy metal-contaminated solution and aged refuse, exploring the feasibility of bioremediation of heavy metals and analyzing the changes in heavy metal forms before and after bioremediation, as well as the mechanism of remediation. The results showed that achieved remediation rates of 95%, 84%, 97%, and 98% for Cd, Pb, Zn, and Cr (III) in contaminated solution, respectively.

View Article and Find Full Text PDF

Biocementation beyond the Petri dish, scaling up to 900 L batches and a meter-scale column.

Sci Rep

January 2025

Environmental Biotechnology, Institute of Microbiology, Department of Environment, Construction and Design, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), 3 Medusoil SA, EPFL Innovation Park Building A, Manno, Switzerland.

Microbial-induced calcite precipitation (MICP), which leverages ureolytic microorganisms, has received significant attention during the past decade as a promising method for sustainable building and geoenvironmental applications. However, transitioning from lab-scale experimentation to volumes suitable for practical use poses challenges. This study addresses these obstacles by screening and analyzing over 50 strains sourced from (i) a natural environment in the canton of Ticino in Switzerland; (ii) microorganism banks; and (iii) an industry-scale bioreactor.

View Article and Find Full Text PDF

The complex pollution and nutrient-poor characteristics of surface waters result in the limited ability of conventional reactors to remove pollutants. In this study, a novel modified ceramsite material, modified with trivalent iron (Fe(III)) and fulvic acid (FA) to form ceramsite@Fe(III)@FA (HC), was used for the first time as a biocarrier to immobilize strain Cupriavidus sp. W12, constructing a biofilter to enhance nitrate (NO-N) removal in micro-polluted water.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!