A key factor affecting foam stability is the interaction of foam with oil in the reservoir. This work investigates how different types of oil influence the stability of foams generated with binary surfactant systems under a high salinity condition. Foam was generated with binary surfactant systems, one composed of a zwitterionic and a nonionic surfactant, and the other composed of an anionic and a nonionic surfactant. Our results showed that the binary surfactant foams investigated are more tolerant under high salinity conditions and in the presence of oil. This was visually observed in our microscopic analysis and was further attributed to an increase in apparent viscosity achieved with binary surfactant systems, compared to single surfactant foams. To understand the influence of oil on foam stability, we performed a mechanistic study to investigate how these oils interact with foams generated with binary surfactants, focusing on their applicability under high salinity conditions. The generation and stability of foam are linked to the ability of the surfactant system to solubilize oil molecules. Oil droplets that solubilize in the micelles appear to destabilize the foam. However, oils with higher molecular weights are too large to be solubilized in the micelles, hence the molecules will have less ability to be transported out of the foam, so oil seems to stabilize the foam. Finally, we conducted a multivariate analysis to identify the parameters that influenced foam stability in different oil types, using the experimental data from our work. The results showed that the oil molecular weight, interfacial tension between the foaming liquid and the oil, and the spreading coefficient are the most important variables for explaining the variation in the data. By performing a partial least square regression, a linear model was developed based on these most important variables, which can be used to predict foam stability for subsequent experiments under the same conditions as our work.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133364PMC
http://dx.doi.org/10.1038/s41598-024-62610-1DOI Listing

Publication Analysis

Top Keywords

binary surfactant
20
surfactant systems
16
high salinity
16
foam stability
16
salinity conditions
12
generated binary
12
foam
10
oil
10
surfactant
9
systems high
8

Similar Publications

In Situ Preparation of Silver Nanoparticles/Organophilic-Clay/Polyethylene Glycol Nanocomposites for the Reduction of Organic Pollutants.

Polymers (Basel)

December 2024

Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.

This work focuses on the preparation and application of silver nanoparticles/organophilic clay/polyethylene glycol for the catalytic reduction of the contaminants methylene blue (MB) and 4-nitrophenol (4-NP) in a simple and binary system. Algerian clay was subjected to a series of treatments including acid treatment, ion exchange with the surfactant hexadecyltrimethylammonium bromide (HTABr), immobilization of polyethylene glycol polymer, and finally dispersion of AgNPs. The molecular weight of polyethylene glycol was varied (100, 200, and 4000) to study its effect on the stabilization of silver nanoparticles (AgNPs) and the catalytic activity of the resulting samples.

View Article and Find Full Text PDF

Investigating the Impact of Polymers on Clay Flocculation and Residual Oil Behaviour Using a 2.5D Model.

Polymers (Basel)

December 2024

Key Laboratory for Enhanced Oil & Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China.

In the process of oilfield development, the surfactant-polymer (SP) composite system has shown significant effects in enhancing oil recovery (EOR) due to its excellent interfacial activity and viscoelastic properties. However, with the continuous increase in the volume of composite flooding injection, a decline in injection-production capacity (I/P capacity) has been observed. Through the observation of frozen core slices, it was found that during the secondary composite flooding (SCF) process, a large amount of residual oil in the form of intergranular adsorption remained in the core pores.

View Article and Find Full Text PDF

In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.

View Article and Find Full Text PDF

We have investigated the effect of length and chemical structure of phospholipid tails on the spontaneous formation of unilamellar liposomal vesicles in binary solute mixtures of cationic drug surfactant and zwitterionic phosphatidylcholine phospholipids. Binary drug surfactant-phospholipid mixtures with four different phospholipids with identical headgroups (two saturated phospholipids 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 14:0) and 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 16:0), and two unsaturated lipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC, 18:1) and 1,2-Dierucoyl-sn-Glycero-3-Phosphatidylcholine (DEPC, 22:1)) combined with two different tricyclic antidepressant drugs (amitriptyline hydrochloride (AMT) and doxepin hydrochloride (DXP)) have been investigated with small-angle neutron scattering (SANS) and cryo-transmission electron microscopy (cryo-TEM). We observe a conspicuous impact of phospholipid tail structure on both micelle-to-vesicle transition point and vesicle size.

View Article and Find Full Text PDF

Thermodynamic Analysis of Mixed Adsorbed Film and Micelle Compositions above Critical Micelle Concentration.

Langmuir

December 2024

International College of Arts and Science, Fukuoka Women's University, Kasumigaoka 1-1-1, Higashi-ku, Fukuoka 813-8529, Japan.

In this paper, we proposed a thermodynamic procedure to evaluate binary surfactant mixed adsorbed film and mixed micelle compositions above critical micelle concentrations. This theory first calculates the change in the molar ratio of two surfactants in monomer and micelle states based on the phase-separation model and then imposes the chemical equilibrium between the mixed adsorbed film and mixed micelle of known composition and concentration. We applied this theory to a cationic-nonionic surfactant mixed system, and the relationship between the calculated mixed adsorbed film composition and foam film stability was discussed using the DLVO theory.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!