Quantum computing for several AGV scheduling models.

Sci Rep

Department of Information Science and Engineering, Ocean University of China, Qingdao, China.

Published: May 2024

Due to the high degree of automation, automated guided vehicles (AGVs) have been widely used in many scenarios for transportation, and traditional computing power is stretched in large-scale AGV scheduling. In recent years, quantum computing has shown incomparable performance advantages in solving specific problems, especially Combinatorial optimization problem. In this paper, quantum computing technology is introduced into the study of the AGV scheduling problem. Additionally two types of quadratic unconstrained binary optimisation (QUBO) models suitable for different scheduling objectives are constructed, and the scheduling scheme is coded into the ground state of Hamiltonian operator, and the problem is solved by using optical coherent Ising machine (CIM). The experimental results show that compared with the traditional calculation method, the optical quantum computer can save 92% computation time on average. It has great application potential.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133359PMC
http://dx.doi.org/10.1038/s41598-024-62821-6DOI Listing

Publication Analysis

Top Keywords

quantum computing
12
agv scheduling
12
scheduling
5
quantum
4
computing agv
4
scheduling models
4
models high
4
high degree
4
degree automation
4
automation automated
4

Similar Publications

Smartphone-based non-invasive detection of salivary uric acid based on the fluorescence quenching of gleditsia sinensis carbon dots.

Mikrochim Acta

January 2025

Guizhou Province, Qianzhi Mingguang Soaphorn Rice Processing Base, Zhijin County, Maochang Town, Bijie CityBijie City, 552103, China.

A smartphone-based non-invasive method was developed for salivary uric acid detection using Gleditsia Sinensis carbon dots (GS-CDs). The GS-CDs synthesized by the one-pot hydrothermal method emitted blue fluorescence at a maximum excitation wavelength of 350 nm and had good fluorescence stability in the presence of different ions, while showing selectivity to uric acid solution. The ability of uric acid (UA) to quench the fluorescent substances present in the GS-CDs, was confirmed through HPLC-FLD and LC-MS, FTIR and XPS.

View Article and Find Full Text PDF

The quest for anisotropic superconductors has been a long-standing pursuit due to their potential applications in quantum computing. In this regard, experimentally, d-wave and anisotropic s-wave superconducting order parameters are predominantly observed, while p-wave superconductors remain largely elusive. Achieving p-wave superconductivity in topological phases is highly desirable, as it is considered suitable for creating topologically protected qubits.

View Article and Find Full Text PDF

This computational study investigated the catalytic efficiency of novel RhCp complexes (X = CF, SiF, CCl, SOH) in [3 + 2] azide-alkyne cycloaddition reactions density functional theory (MN12-L/Def2-SVP). Through quantum mechanical approaches, we explore the impact of different substituents on the Cp* ligand on the mechanism, selectivity, and reactivity of these Rh-based catalysts. Non-covalent interaction (NCI) and reduced density gradient (RDG) analyses, along with frontier molecular orbital (FMO) and Hirshfeld atomic charge analyses, were utilized to assess ligand stability and catalytic performance.

View Article and Find Full Text PDF

This study explores the evolving role of social media in the spread of misinformation during the Ukraine-Russia conflict, with a focus on how artificial intelligence (AI) contributes to the creation of deceptive war imagery. Specifically, the research examines the relationship between color patterns (LUTs) in war-related visuals and their perceived authenticity, highlighting the economic, political, and social ramifications of such manipulative practices. AI technologies have significantly advanced the production of highly convincing, yet artificial, war imagery, blurring the line between fact and fiction.

View Article and Find Full Text PDF

Context: Cation-π and cation-lone pair interactions between 3d-metal (II) ions [Fe(II), Co(II), Ni(II) and Cu(II)] and furan are explored in the formation of 1:1 and 1:2 type complexes. Both cation-π (IE = -192.27 to -312.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!