In nature, structural and functional materials often form programmed three-dimensional (3D) assembly to perform daily functions, inspiring researchers to engineer multifunctional 3D structures. Despite much progress, a general method to fabricate and assemble a broad range of materials into functional 3D objects remains limited. Herein, to bridge the gap, we demonstrate a freeform multimaterial assembly process (FMAP) by integrating 3D printing (fused filament fabrication (FFF), direct ink writing (DIW)) with freeform laser induction (FLI). 3D printing performs the 3D structural material assembly, while FLI fabricates the functional materials in predesigned 3D space by synergistic, programmed control. This paper showcases the versatility of FMAP in spatially fabricating various types of functional materials (metals, semiconductors) within 3D structures for applications in crossbar circuits for LED display, a strain sensor for multifunctional springs and haptic manipulators, a UV sensor, a 3D electromagnet as a magnetic encoder, capacitive sensors for human machine interface, and an integrated microfluidic reactor with a built-in Joule heater for nanomaterial synthesis. This success underscores the potential of FMAP to redefine 3D printing and FLI for programmed multimaterial assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11133382PMC
http://dx.doi.org/10.1038/s41467-024-48919-5DOI Listing

Publication Analysis

Top Keywords

multimaterial assembly
12
functional materials
12
programmed multimaterial
8
freeform laser
8
laser induction
8
assembly
5
programmed
4
assembly synergized
4
printing
4
synergized printing
4

Similar Publications

Direct ink writing is a 3D printing method that is compatible with a wide range of structural, elastomeric, electronic, and living materials, and it continues to expand its uses into physics, engineering, and biology laboratories. However, the large footprint, closed hardware and software ecosystems, and expense of commercial systems often hamper widespread adoption. This work introduces a compact, low-cost, multimaterial, and high-throughput direct ink writing 3D printer platform with detailed assembly files and instructions provided freely online.

View Article and Find Full Text PDF

In the industry sector, it is very common to have different types of dissimilar materials on the same construction rather than products made from a single type of material. Traditional methods (welding, mechanical fastening, and adhesive bonding) and hybrid techniques (friction stir welding, weld bonding, and laser welding) are used in the assembly or joining of these materials. However, while joining similar types of materials is relatively easy, the process becomes more challenging when joining dissimilar materials due to the structure and properties of the materials involved.

View Article and Find Full Text PDF

The infra-red video bolometer (IRVB) is a diagnostic equipped with an infra-red camera that measures the total radiated power in thousands of lines of sight within a large field of view. Recently validated in MAST-U [Fderici et al., Rev.

View Article and Find Full Text PDF

Material extrusion (MEX) additive manufacturing has successfully fabricated assembly-free structures composed of different materials processed in the same manufacturing cycle. Materials with different mechanical properties can be employed for the fabrication of bio-inspired structures (i.e.

View Article and Find Full Text PDF

High-precision additive manufacturing technologies, such as two-photon polymerization, are mainly limited to photo-curable polymers and currently lacks the possibility to produce multimaterial components. Herein, we report a physically bottom-up assembly strategy that leverages capillary force to trap various nanomaterials and assemble them onto three-dimensional (3D) microscaffolds. This capillary-trapping strategy enables precise and uniform assembly of nanomaterials into versatile 3D microstructures with high uniformity and mass loading.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!