Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In the era of social media, the use of emojis and code-mixed language has become essential in online communication. However, selecting the appropriate emoji that matches a particular sentiment or emotion in the code-mixed text can be difficult. This paper presents a novel task of predicting multiple emojis in English-Hindi code-mixed sentences and proposes a new dataset called SENTIMOJI, which extends the SemEval 2020 Task 9 SentiMix dataset. Our approach is based on exploiting the relationship between emotion, sentiment, and emojis to build an end-to-end framework. We replace the self-attention sublayers in the transformer encoder with simple linear transformations and use the RMS-layer norm instead of the normal layer norm. Moreover, we employ Gated Linear Unit and Fully Connected layers to predict emojis and identify the emotion and sentiment of a tweet. Our experimental results on the SENTIMOJI dataset demonstrate that the proposed multi-task framework outperforms the single-task framework. We also show that emojis are strongly linked to sentiment and emotion and that identifying sentiment and emotion can aid in accurately predicting the most suitable emoji. Our work contributes to the field of natural language processing and can help in the development of more effective tools for sentiment analysis and emotion recognition in code-mixed languages. The codes and data will be available at https://www.iitp.ac.in/~ai-nlp-ml/resources.html#SENTIMOJI to facilitate research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551207 | PMC |
http://dx.doi.org/10.1038/s41598-024-58944-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!