The patterns of organic carbon sequestration in lakes, along with their temporal dynamics, have profound implications for assessing the strength of terrestrial carbon sinks and the global carbon budget. The complexity of fluctuations in organic carbon burial in freshwater lake basins, along with the intricate interactions among various controlling factors over time, remains challenging to comprehend. By utilizing data on the organic carbon burial of sedimentary cores from twelve plateau lakes in a gradient of urbanization, this study employed a rigorous methodology to quantify the factors and origins that contribute to lacustrine carbon sequestration. The findings indicate that the rate of Total Organic Carbon (TOC) accumulation in lakes in highly urbanized areas has significantly surpassed that in areas with minimal urbanization since 1985. This trend of divergence has persisted for more than four decades. During the period from 1958 to 2008, soil nutrient characteristics (29.576 %) and human impact (16.684 %) were the major factors regulating the organic carbon burial in plateau lakes. Human pressures indirectly impact carbon sequestration through earth-surface processes in the lake basin, causing carbon burial to lag behind environmental indicators (e.g., δC and C/N) by approximately 5 years. Meanwhile, the carbon sequestration efficiency of plateau lakes shows a positive feedback to climatic warming with intensified urbanization, primarily regulated through the impacts on lake basin environments. The results will further enhance our understanding of the response of the lake ecosystem carbon cycle to anthropogenic influences.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173556 | DOI Listing |
Chem Sci
December 2024
College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University Nanyang 473601 P. R. China
The conversion of carbon dioxide (CO) into carbon-neutral fuels using solar energy is crucial for achieving energy sustainability. However, the high carrier charge recombination and low CO adsorption capacity of the photocatalysts present significant challenges. In this paper, a TAPB-COF@ZnInS-30 (TAPB-COFZ-30) heterojunction photocatalyst was constructed by growth of ZnInS (ZIS) on a hollow covalent organic framework (HCOF) with a hollow core-shell structure for CO to CO conversion.
View Article and Find Full Text PDFGlob Chang Biol
January 2025
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai, China.
Coastal wetlands contain very large carbon (C) stocks-termed as blue C-and their management has emerged as a promising nature-based solution for climate adaptation and mitigation. The interactions among sources, pools, and molecular compositions of soil organic C (SOC) within blue C ecosystems (BCEs) remain elusive. Here, we explore these interactions along an 18,000 km long coastal line of salt marshes, mangroves, and seagrasses in China.
View Article and Find Full Text PDFFEMS Microbiol Ecol
January 2025
Department of Forest Sciences, University of Helsinki, PO Box 27, 00014 Helsinki, Finland.
PLoS One
December 2024
Environmental Molecular Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America.
Coastal wetlands, including freshwater systems near large lakes, rapidly bury carbon, but less is known about how they transport carbon either to marine and lake environments or to the atmosphere as greenhouse gases (GHGs) such as carbon dioxide and methane. This study examines how GHG production and organic matter (OM) mobility in coastal wetland soils vary with the availability of oxygen and other terminal electron acceptors. We also evaluated how OM and redox-sensitive species varied across different size fractions: particulates (0.
View Article and Find Full Text PDFJ Environ Qual
January 2025
Agricultural and Ecological Research Unit, Indian Statistical Institute, Giridih, Jharkhand, India.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!