Facile room temperature synthesis of size-controlled spherical silica from silicon metal via simple sonochemical process.

Ultrason Sonochem

Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.

Published: July 2024

The waterglass or St o¨ ber method is commonly used to synthesize spherical colloidal silica; however, these methods have some disadvantages, such as complicated processes for the removal of sodium ions and expensive and energy-consuming raw materials such as tetraethoxysilane (TEOS). In this study, size-controlled spherical colloidal silica was synthesized from silicon metal at room temperature using an ultrasound process with hydrazine monohydrate as the solvent. Silicon metal dissolves easily in hydrazine monohydrate under ultrasound irradiation, and spherical colloidal silica can be synthesized by adding alcohol to this precursor solution. By changing the concentration or type of alcohol, size-controlled colloidal silica 20-200 nm in size could be easily obtained. In addition, finer and more monodisperse particles were produced by low-frequency ultrasound irradiation, which had a higher stirring effect at the particle formation stage. The present method is effective because size-controlled colloidal silica can be synthesized at room temperature using only silicon metal, hydrazine, and alcohol as raw materials, without complicated processes or expensive and energy-consuming raw materials such as TEOS or tetramethoxysilane (TMOS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11154706PMC
http://dx.doi.org/10.1016/j.ultsonch.2024.106913DOI Listing

Publication Analysis

Top Keywords

colloidal silica
20
silicon metal
16
room temperature
12
spherical colloidal
12
raw materials
12
silica synthesized
12
size-controlled spherical
8
complicated processes
8
expensive energy-consuming
8
energy-consuming raw
8

Similar Publications

Purpose: To improve the oral absorption of relugolix (RLGL), which has low oral bioavailability due to its low solubility and being a substrate of P-glycoprotein (P-gp). A solid self-microemulsifying drug delivery system of relugolix (RLGL-S-SMEDDS) was prepared and evaluated in vitro and in vivo.

Methods: The composition of the solid self-microemulsifying drug delivery system (S-SMEDDS) was selected by solubility study and pseudo-ternary phase diagram, and further optimized by Design-Expert optimization design.

View Article and Find Full Text PDF

Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles.

Langmuir

January 2025

School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).

View Article and Find Full Text PDF

Hollow mesoporous silica nanoparticles for drug formulation and delivery: Opportunities for cancer therapy.

Colloids Surf B Biointerfaces

January 2025

Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No.1 East 1st Ring Road, Hanzhong, Shaanxi 723001, PR China.

The advantages of large surface area, high volume ratio, good biocompatibility, and controllable surface functionalization make hollow mesoporous silica nanoparticles (HMSNs) an ideal drug carrier. HMSNs can achieve high efficiency, targeting, and controlled release by adjusting the microstructure and surface modification of its particles, which makes it broad application prospects in the field of medical therapy, especially in cancer therapy. Numerous studies have shown that preparation method, shape, particle size, hollow inner diameter, aperture and wall thickness of the HMSNs, the characteristics of the drugs, the interaction between the drugs and the carriers, and the external environment all closely affect the drug delivery, release, and efficacy.

View Article and Find Full Text PDF

Microfluidic-assisted sol-gel preparation of monodisperse mesoporous silica microspheres with controlled size, surface morphology, porosity and stiffness.

Nanoscale

January 2025

National Engineering Research Center for Colloidal Materials, School of Chemistry & Chemical Engineering, Shandong University, Jinan 250100, P. R. China.

The controllable synthesis of monodisperse mesoporous silica microspheres with unique physicochemical properties is becoming increasingly important for a variety of applications such as catalysts, chromatography, drug delivery and sensors. Here, we report a facile microfluidic-assisted sol-gel method for the preparation of silica microspheres with precisely controlled properties such as the size of the microspheres, the surface morphology, porosity and stiffness. All these properties can be manipulated by changing specific synthesis parameters, such as changing the microfluidic channels to tune the size of the microdroplets (tens to hundreds of microns), changing the contents of the precursor solution to manipulate the surface morphology (wrinkled to smooth surface) and changing the gelation/annealing conditions to tune the porosity (surface area up to 1021 m g) and stiffness of the microspheres (elastic modulus tunable from 0.

View Article and Find Full Text PDF

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!