Forensic Sci Int
Forensic Biology Department, PathWest Laboratory Medicine, Perth, WA, Australia.
Published: July 2024
The generation of high-quality DNA profiles from trace amounts of DNA continues to be an issue in forensic casework. Several methods have been proposed over the years to increase recovery rates for low input DNA, including purification of PCR products, an increase in PCR cycle numbers and increasing injection time or voltage during electrophoresis. In this study, the characteristics of DNA profiles generated using QIAGEN MinElute® purification of Promega PowerPlex® 21 amplified products for low DNA input samples, ranging from 80 pg down to 4 pg, were evaluated. MinElute® purification was found to be a simple, effective and time efficient method, which can greatly improve the resolution of amplified PCR products, recovering 100% of donor concordant alleles from as little 16 pg of input template DNA and generating sufficient allelic information for interpretation from as low as 4 pg inputs. However, as is commonly observed with low template DNA samples, the results exhibited extensive disparity in the effects of stochastic variation in amplification, including increased heterozygote peak height imbalance, stutter ratios and instances of allelic drop-in and drop-out, both within and between replicates. As such, it is important that the extent and variability of these stochastic effects are appropriately incorporated in the development of robust profile interpretation guidelines for DNA profiles generated from purified PCR products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.forsciint.2024.112064 | DOI Listing |
Pathology
December 2024
Department of Pathology, Amsterdam University Medical Centers/VUmc, Amsterdam, The Netherlands; Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.
In the course of the last decade, the pathological diagnosis of many tumours of the central nervous system (CNS) has transitioned from a purely histological to a combined histological and molecular approach, resulting in a more precise 'histomolecular diagnosis'. Unfortunately, translation of this refinement in CNS tumour diagnostics into more effective treatment strategies is lagging behind. There is hope though that incorporating the assessment of predictive markers in the pathological evaluation of CNS tumours will help to improve this situation.
View Article and Find Full Text PDFJ Mol Diagn
January 2025
Labcorp Oncology (PGDx), Baltimore, MD 21224.
To help guide treatment decisions and clinical trial matching, tumor genomic profiling is an essential precision oncology tool. Liquid biopsy, a complementary approach to tissue testing, can assess tumor-specific DNA alterations circulating in the blood. Labcorp Plasma Complete is a next-generation sequencing, cell-free DNA comprehensive genomic profiling test that identifies clinically relevant somatic variants across 521 genes in advanced and metastatic solid cancers.
View Article and Find Full Text PDFClin Genitourin Cancer
December 2024
Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China. Electronic address:
Objective: The aim of our study was to characterize the spectrum of mutations in muscle-invasive bladder cancer (MIBC) in the Chinese population, identifying mutational features and exploring potential therapeutic targets.
Methods: We collected samples from 62 Chinese patients with MIBC. For each patient, tumor tissues or blood samples were collected and sequenced by whole exome sequencing.
Int J Biol Macromol
January 2025
School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. These structures play pivotal roles in cellular processes, including DNA replication, transcription, RNA splicing, and protein translation. High-throughput sequencing has significantly advanced the study of G4s by enabling genome-wide mapping and detailed characterization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.