Chemomechanical Communication between Liposomes Based on Enzyme Cascades.

J Am Chem Soc

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Published: June 2024

Communication between cells is crucial to the survival of both uni- and multicellular organisms. The primary mode of communication involves chemical cues. There is great current interest in mimicking this behavior in synthetic cells to understand the physical basis of intercellular communication and design collective functional behavior. Using liposomal cell mimics, we demonstrate how a chemical input can elicit a mechanical response (enhanced motility). We employed a single substrate to trigger enzyme cascade-induced control of the diffusion of up to three different liposome populations. Furthermore, substrate competition allows temporal control over enhanced diffusion. The use of enzyme cascades to propagate chemical signals provides a robust and efficient mechanism for diverse populations of protocells to coordinate their motion in response to signals from each other.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c03415DOI Listing

Publication Analysis

Top Keywords

enzyme cascades
8
chemomechanical communication
4
communication liposomes
4
liposomes based
4
based enzyme
4
cascades communication
4
communication cells
4
cells crucial
4
crucial survival
4
survival uni-
4

Similar Publications

Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.

View Article and Find Full Text PDF

Neddylation is a process of attaching neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to substrates for the protein function modulation via enzymatic cascades involving NEDD8-activating enzyme (E1), NEDD8-conjugating enzyme (E2), and NEDD8 ligase (E3). Defective in cullin neddylation 1 (DCN1) serves as a co-E3 ligase, that can simultaneously bind E2 UBE2M and cullin proteins to stabilize the catalytic center of the Cullin-Ring E3 ligase (CRL) complex, thereby promoting cullin neddylation. Neddylation is reported to be activated in diverse human diseases, and inhibition of protein neddylation has been regarded as a promising anticancer therapy.

View Article and Find Full Text PDF

Activation of the p38 mitogen-activated protein kinase (MAPK) pathways is vital in regulating cell growth, differentiation, apoptosis, and stress response, significantly affecting tumorigenesis and cancer progression. We developed a bioinformatic technique to construct an interactome network-based molecular pathways for genes of interest and quantify their activation levels using high-throughput gene expression data. This study is focused on the p38α, p38β, p38γ, and p38δ kinases, examining their activation levels (PALs) based on transcriptomic data and their associations with survival and drug responsiveness across various cancer types.

View Article and Find Full Text PDF

Efficient Spermidine Production Using a Multi-Enzyme Cascade System Utilizing Methionine Adenosyltransferase from Lactobacillus fermentum with Reduced Product Inhibition and Acidic pH Preference.

J Biotechnol

January 2025

The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Health Sciences, Fuyao University of Science & Technology, Fuzhou, Fujian Province, China. Electronic address:

Methionine adenosyltransferases (MATs; EC 2.5.1.

View Article and Find Full Text PDF

The treatment of diabetic wounds with bacterial infection is a major challenge in the medical field. Microenvironment-responsive hydrogel dressings have shown great advantages, and photothermal antibacterial therapy is a potential antimicrobial strategy to avoid the generation of resistant bacteria. In this work, a glucose-triggered near-infrared (NIR)-responsive photothermal antibacterial hydrogel was designed and named GOGD based on a cascade reaction of glucose oxidation and polyphenol polymerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!