Exposure to environmental stressors, including certain antibiotics, induces stress responses in bacteria. Some of these responses increase mutagenesis and thus potentially accelerate resistance evolution. Many studies report increased mutation rates under stress, often using the standard experimental approach of fluctuation assays. However, single-cell studies have revealed that many stress responses are heterogeneously expressed in bacterial populations, which existing estimation methods have not yet addressed. We develop a population dynamic model that considers heterogeneous stress responses (subpopulations of cells with the response off or on) that impact both mutation rate and cell division rate, inspired by the DNA-damage response in Escherichia coli (SOS response). We derive the mutant count distribution arising in fluctuation assays under this model and then implement maximum likelihood estimation of the mutation-rate increase specifically associated with the expression of the stress response. Using simulated mutant count data, we show that our inference method allows for accurate and precise estimation of the mutation-rate increase, provided that this increase is sufficiently large and the induction of the response also reduces the division rate. Moreover, we find that in many cases, either heterogeneity in stress responses or mutant fitness costs could explain similar patterns in fluctuation assay data, suggesting that separate experiments would be required to identify the true underlying process. In cases where stress responses and mutation rates are heterogeneous, current methods still correctly infer the effective increase in population mean mutation rate, but we provide a novel method to infer distinct stress-induced mutation rates, which could be important for parameterising evolutionary models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161091 | PMC |
http://dx.doi.org/10.1371/journal.pcbi.1012146 | DOI Listing |
J Neuroinflammation
January 2025
Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, No. 569 Xinsi Road, Xi'an, China.
Autophagy is responsible for maintaining cellular balance and ensuring survival. Autophagy plays a crucial role in the development of diseases, particularly human cancers, with actions that can either promote survival or induce cell death. However, brain tumors contribute to high levels of both mortality and morbidity globally, with resistance to treatments being acquired due to genetic mutations and dysregulation of molecular mechanisms, among other factors.
View Article and Find Full Text PDFBMC Biol
January 2025
The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
Background: The variations in alliin content are a crucial criterion for evaluating garlic quality and is the sole precursor for allicin biosynthesis, which is significant for the growth, development, and stress response of garlic. WRKY transcription factors are essential for enhancing stress resistance by regulating the synthesis of plant secondary metabolites. However, the molecular mechanisms regulating alliin biosynthesis remain unexplored.
View Article and Find Full Text PDFHealth Res Policy Syst
January 2025
Centre for Epidemic Interventions Research, Norwegian Institute of Public Health, Oslo, Norway.
During public health crises such as pandemics, governments must rapidly adopt and implement wide-reaching policies and programs ("public policy interventions"). A key takeaway from the coronavirus disease 2019 (COVID-19) pandemic was that although numerous randomized controlled trials (RCTs) focussed on drugs and vaccines, few policy experiments were conducted to evaluate effects of public policy interventions across various sectors on viral transmission and other consequences. Moreover, many quasi-experimental studies were of spurious quality, thus proving unhelpful for informing public policy.
View Article and Find Full Text PDFMol Neurodegener
January 2025
College of Life Sciences and Oceanography, Brain Disease and Big Data Research Institute, Shenzhen University, Shenzhen, 518060, Guangdong, China.
Background: Astrocytes, the most abundant glial cell type in the brain, will convert into the reactive state in response to proteotoxic stress such as tau accumulation, a characteristic feature of Alzheimer's disease (AD) and other tauopathies. The formation of reactive astrocytes is partially attributed to the disruption of autophagy lysosomal signaling, and inhibiting of some histone deacetylases (HDACs) has been demonstrated to reduce the molecular and functional characteristics of reactive astrocytes. However, the precise role of autophagy lysosomal signaling in astrocytes that regulates tau pathology remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!