In this study, we characterize the exopolymer produced by Halomonas sp. strain TGOS-10 -one of the organisms found enriched in sea surface oil slicks during the Deepwater Horizon oil spill. The polymer was produced during the early stationary phase of growth in Zobell's 2216 marine medium amended with glucose. Chemical and proton NMR analysis showed it to be a relatively monodisperse, high-molecular-mass (6,440,000 g/mol) glycoprotein composed largely of protein (46.6% of total dry weight of polymer). The monosaccharide composition of the polymer is typical to that of other marine bacterial exopolymers which are generally rich in hexoses, with the notable exception that it contained mannose (commonly found in yeast) as a major monosaccharide. The polymer was found to act as an oil dispersant based on its ability to effectively emulsify pure and complex oils into stable oil emulsions-a function we suspect to be conferred by the high protein content and high ratio of total hydrophobic nonpolar to polar amino acids (52.7:11.2) of the polymer. The polymer's chemical composition, which is akin to that of other marine exopolymers also having a high protein-to-carbohydrate (P/C) content, and which have been shown to effect the rapid and non-ionic aggregation of marine gels, appears indicative of effecting marine oil snow (MOS) formation. We previously reported the strain capable of utilising aromatic hydrocarbons when supplied as single carbon sources. However, here we did not detect biodegradation of these chemicals within a complex (surrogate Macondo) oil, suggesting that the observed enrichment of this organism during the Deepwater Horizon spill may be explained by factors related to substrate availability and competition within the complex and dynamic microbial communities that were continuously evolving during that spill.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11132480PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0299235PLOS

Publication Analysis

Top Keywords

produced halomonas
8
marine oil
8
oil snow
8
deepwater horizon
8
oil
7
marine
6
polymer
5
characterization surface-active
4
surface-active exopolysaccharide
4
exopolysaccharide produced
4

Similar Publications

Metabolic engineering of Bacillus licheniformis DW2 for ectoine production.

World J Microbiol Biotechnol

January 2025

State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, 368 Youyi Avenue, Wuchang District, Wuhan, Hubei, 430062, P.R. China.

Ectoine is a high-value protective agent with extensive applications in the fields of fine chemicals and biopharmaceuticals, and it is naturally synthesized by Halomonas in extreme environment, however, the current production level cannot meet the growing market demand. In this study, we aimed to develop an efficient and environmentally friendly ectoine production process using Bacillus licheniformis as the host organism. Through introducing ectoine synthetase gene cluster ectABC from Halomonas elongate, as well as optimizing ectABC expression by promoter and 5'-UTR optimization, ectoine titer was increased to 0.

View Article and Find Full Text PDF

Enhanced poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production from volatile fatty acids by Halomonas sp. YJ01 with 2-methylcitrate cycle.

J Environ Manage

December 2024

School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, PR China; International Science and Technology Cooperation Platform for Low-Carbon Recycling of Waste and Green Development, Zhejiang Gongshang University, Hangzhou, 310012, PR China. Electronic address:

Volatile fatty acids (VFAs) are suitable substrates for synthesizing poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), wherein propionate is a precursor of PHBV biosynthesis; however, high concentrations are toxic to bacteria. Therefore, VFAs with suitable ratio are needed. Here, with the ratio of acetate: propionate: butyrate being 1:4:2, the maximum PHBV content and the 3HV content were 46.

View Article and Find Full Text PDF

Ectoine, an osmolyte produced by various microorganisms, has numerous commercial applications. Vreelandella boliviensis (formerly called Halomonas boliviensis) generates high ectoine concentrations, i.e.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines the microbial sources impacting the quality and safety of Idiazabal cheese, highlighting the diverse ecosystems present in raw milk and cheese samples.
  • Major contributors to the microbiota are identified as commercial feed and teat skin, with specific bacterial genera linked to cheese quality and safety.
  • The research also uncovers connections between these microbial sources and the presence of virulence and antimicrobial resistance genes, which could affect cheese production and public health.
View Article and Find Full Text PDF

Recent Trends in the Production and Recovery of Bioplastics Using Polyhydroxyalkanoates Copolymers.

Microorganisms

October 2024

Departamento de Ingeniería Celular y Biocatálisis, Universidad Nacional Autónoma de México, Cuernavaca 62210, Morelos, Mexico.

Article Synopsis
  • * Among PHAs, the P(3HB--3HV) copolymers are notable for their soft, flexible nature, making them suitable for a wider range of applications, particularly in bioplastics.
  • * Recent advancements have focused on enhancing PHA production through innovative fermentation strategies using various microbial strains and low-cost substrates, aiming to improve the yield and mechanical properties of copolymers for biomedical uses.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!