Effect of Land Use Change on Molecular Composition and Concentration of Organic Matter in an Oxisol.

Environ Sci Technol

School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales 2015, Australia.

Published: June 2024

Land use change from native vegetation to cropping can significantly affect the quantity and quality of soil organic matter (SOM). However, it remains unclear how the chemical composition of SOM is affected by such changes. This study employed a sequential chemical extraction to partition SOM from an Oxisol into several distinct fractions: water-soluble fractions (ultrapure water (W)), organometal complexes (sodium pyrophosphate (PP)), short-range ordered (SRO) oxides (hydroxylamine-HCl (HH)), and well-crystalline oxides (dithionite-HCl (DH)). Coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), the impact of land use change on the molecular composition of different OM fractions was investigated. Greater amounts of OM were observed in the PP and HH fractions compared to other fractions, highlighting their importance in SOM stabilization. The composition of different OM fractions varied based on extracted phases, with lignin-like and tannin-like compounds being prevalent in the PP and HH fractions, while aliphatic-like compounds dominated in the DH fraction. Despite changes in the concentration of each OM fraction from native vegetation to cropping, there was little influence of land use change on the molecular composition of OM associated with different mineral phases. No significant selective loss or preservation of organic carbon compounds was observed, indicating the composition of SOM remained unchanged.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171453PMC
http://dx.doi.org/10.1021/acs.est.4c00740DOI Listing

Publication Analysis

Top Keywords

land change
16
change molecular
12
molecular composition
12
organic matter
8
native vegetation
8
vegetation cropping
8
composition som
8
composition fractions
8
fractions
7
composition
6

Similar Publications

A dramatic decrease of biodiversity is currently questioning human-environment interactions that have shaped ecosystems over thousands of years. In old cultural landscapes of Central and East European (CEE) countries, a vast species decline has been reported for various taxa although intensive land cultivation has been reduced in favor of agroecological transformation, nature conservation and sustainable land management in the past 30 years. Thus, in the recent history, agricultural intensification cannot solely be discussed as the major driver controlling biodiversity.

View Article and Find Full Text PDF

Food production does more damage to wild species than any other sector of human activity, yet how best to limit its growing impact is greatly contested. Reviewing progress to date in interventions that encourage less damaging diets or cut food loss and waste, we conclude that both are essential but far from sufficient. In terms of production, field studies from five continents quantifying the population-level impacts of land sharing, land sparing, intermediate and mixed approaches for almost 2000 individually assessed species show that implementing high-yield farming to spare natural habitats consistently outperforms land sharing, particularly for species of highest conservation concern.

View Article and Find Full Text PDF

Human-driven habitat loss is recognized as the greatest cause of the biodiversity crisis, yet to date we lack robust, spatially explicit metrics quantifying the impacts of anthropogenic changes in habitat extent on species' extinctions. Existing metrics either fail to consider species identity or focus solely on recent habitat losses. The persistence score approach developed by Durán .

View Article and Find Full Text PDF

Indigenous university students' perceptions regarding nature, their daily lives and climate change: a photovoice study.

BMC Public Health

January 2025

Department of Population Health Sciences, School of Life Course & Population Sciences, King's College London, Franklin-Wilkins Building, Stamford Street London, SE1 9NH, UK.

Background: Climate change has severe health impacts, particularly for populations living in environmentally sensitive areas such as riversides, slopes, and forests. These challenges are exacerbated for Indigenous communities, who often face marginalisation and rely heavily on the land for their livelihoods. Despite their vulnerability, the perspectives of Indigenous populations on climate change and its impacts remain underexplored, creating a critical gap in the literature.

View Article and Find Full Text PDF

Soil salinization is one of the main problems leading to a reduction in arable land area. In the present study, strongly salt-tolerant lines were screened for germination rates and physiological indices. The mechanism of saline-alkali stress tolerance in winter rapeseed was examined using transcriptome and metabolome analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!