Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies.

Arch Microbiol

Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.

Published: May 2024

AI Article Synopsis

  • * The review discusses various strategies such as antimicrobial peptides, innovative drug delivery systems like nanoparticles, vaccines, and non-conventional treatments, evaluating their effectiveness and challenges.
  • * Findings indicate that antimicrobial peptides and advanced delivery systems hold significant potential in fighting resistance, while preventive vaccines and antibody therapies face development hurdles; a coordinated global approach is crucial for successful intervention.

Article Abstract

Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00203-024-03998-2DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
16
resistance
8
drug delivery
8
delivery systems
8
vaccines antibody
8
antibody therapies
8
non-traditional antibiotic
8
antibiotic treatments
8
antimicrobial
5
decoding antimicrobial
4

Similar Publications

Antifungal Properties of Polycephalomyces nipponicus (Ascomycetes) against Candida albicans: Potential for Novel Therapeutic Development.

Int J Med Mushrooms

December 2024

Department of Biology, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand; Microbiology and Applied Microbiology Research Unit, Faculty of Science, Mahasarakham University, Kantarawichai District, Maha Sarakham, Thailand.

Candida albicans has the potential to turn pathogenic and cause mild to severe infections, particularly in people with weakened immune systems. Novel therapeutics are required due to its morphological alterations, biofilm development, and resistance to antifungal drugs. Polycephalomyces nipponicus, a traditional East Asian medicinal fungus, has shown potential as an antifungal agent.

View Article and Find Full Text PDF

The Bacterial Biofilms: Formation, Impacts, and Possible Management Targets in the Healthcare System.

Can J Infect Dis Med Microbiol

December 2024

Department of Applied Health Sciences, School of Health Sciences, Kisii University, Kisii, Kenya.

The persistent increase in multidrug-resistant pathogens has catalyzed the creation of novel strategies to address antivirulence and anti-infective elements. Such methodologies aim to diminish the selective pressure exerted on bacterial populations, decreasing the likelihood of resistance emergence. This review explores the role of biofilm formation as a significant virulence factor and its impact on the development of antimicrobial resistance (AMR).

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is a global health crisis that is predicted to worsen in the coming years. While improper antibiotic usage is an established driver, less is known about the impact of other endogenous and exogeneous environmental factors, such as metals, on AMR. One metal of interest is zinc as it is often used as a supplement for diarrhea treatment prior to antibiotics.

View Article and Find Full Text PDF

Neonatal calf diarrhea (NCD) remains a significant contributor to calf mortality within the first 3 weeks of life, prompting widespread antibiotic use with associated concerns about antimicrobial resistance and disruption of the calf gut microbiota. Recent research exploring NCD treatments targeting gut microbiota dysbiosis has highlighted probiotic supplementation as a promising and safe strategy for gut homeostasis. However, varying treatment outcomes across studies suggest the need for efficient treatment options.

View Article and Find Full Text PDF

Background: has emerged as an important nosocomial opportunistic pathogen, often associated with serious infections. We investigated the antimicrobial resistance trends, predisposing factors, and infection outcomes associated with isolated in a secondary-care hospital in Oman.

Materials And Methods: A retrospective study was conducted at a secondary-care hospital in the northern region of Oman after receiving approval from the research ethics and approval committee of Oman.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: