By using first principles calculations, we theoretically investigate the electronic structures and the interfacial and optical properties of the two-dimensional tellurene (Te)-gallium arsenide (GaAs) van der Waals heterostructures (vdWHs), , α-Te/GaAs and γ-Te/GaAs, formed using Te and GaAs monolayers. It has been demonstrated that, the semiconductor-semiconductor contacted α-Te/GaAs vdWH exhibits a type-II band alignment with a direct band gap of 0.28 eV while the metal-semiconductor contacted γ-Te/GaAs vdWH has a p-type Schottky contact with a Schottky barrier height (SBH) of 0.36 eV at the interface. The transition from type-II to type-III band alignment is observed firstly in the α-Te/GaAs vdWH when the in-plane biaxial strain is less than -5.2% and larger than 4.4%, meanwhile, the p-type Schottky contact to Ohmic contact transition may be realized in the γ-Te/GaAs vdWH when the in-plane biaxial strain is less than -2.4%. Finally, the maximum optical absorption coefficients of the α- and γ-Te/GaAs vdWHs have been found to be up to 31% and 29%, respectively, and may be modulated effectively by applying in-plane biaxial strain. The obtained results may be of importance in the design of nanoelectronic devices based on the proposed tellurene/GaAs vdWHs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp00560k | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Department of Chemistry, Utkal University, Bhubaneswar, 751 004, Odisha, India.
This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.
View Article and Find Full Text PDFFront Chem
January 2025
Key laboratory of Rubber-Plastic of Ministry of Education /Shandong Province (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China.
Perovskite solar cells (PVSCs) show remarkable potential due to their high-power conversion efficiencies and scalability. However, challenges related to stability and long-term performance remain significant. Self-assembled monolayers (SAMs) have emerged as a crucial solution, enhancing interfacial properties, facilitating hole extraction, and minimizing non-radiative recombination.
View Article and Find Full Text PDFACS Omega
January 2025
Centro de Investigación en Materiales Avanzados, S.C. (CIMAV Subsede Monterrey), Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, C.P. 66628 Apodaca, Nuevo León, Mexico.
Thermal atomic layer deposition (TALD) and plasma atomic layer deposition (PALD) were used for producing thin NiO films from nickel(II) acetylacetonate Ni(acac), employing different oxidizing agents (deionized water HO, ozone O, and molecular oxygen O). The films were deposited at 300 °C (TALD) and 220 °C (PALD) over glass substrates; their physical and chemical properties were considerably influenced by the choice of oxidizing agents. In particular, ALD(HO) samples had a low growth per cycle (GPC) and a high concentration of defects.
View Article and Find Full Text PDFChemistry
January 2025
Yanshan University, Physics, Hebeidajie,438, 066004, Qinhuangdao, CHINA.
Identifying two-dimensional (2D) high-efficiency solar photovoltaic devices remains an urgent challenge in addressing current energy demands. Considering the limits of isolated 2D systems in photovoltaics, one most effective solution is stacking them into van der Waals heterostructures (vdWHs). However, the favorable factors for photovoltaics in vdWHs is still uncertain, nor the intrinsic principles is clear.
View Article and Find Full Text PDFMater Horiz
January 2025
Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
Quantum dots have garnered significant interest in perovskite solar cells (PSCs) due to their stable chemical properties, high carrier mobility, and unique features such as multiple exciton generation and excellent optoelectronic characteristics resulting from quantum confinement effects. This review explores quantum dot properties and their applications in photoelectronic devices, including their synthesis and deposition processes. This sets the stage for discussing their diverse roles in the carrier transport, absorber, and interfacial layers of PSCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!