We report on time-resolved nonlinear terahertz spectroscopy of a strongly correlated ruthenate, CaRuO_{3}, as a function of temperature, frequency, and terahertz field strength. Third-harmonic radiation for frequencies up to 2.1 THz is observed evidently at low temperatures below 80 K, where the low-frequency linear dynamical response deviates from the Drude model and a coherent heavy quasiparticle band emerges by strong correlations associated with the Hund's coupling. Phenomenologically, by taking an experimentally observed frequency-dependent scattering rate, the deviation of the field driven kinetics from the Drude behavior is reconciled in a time-dependent Boltzmann description, which allows an attribution of the observed third-harmonic generation to the terahertz field driven nonlinear kinetics of the heavy quasiparticles.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.132.196501DOI Listing

Publication Analysis

Top Keywords

third-harmonic generation
8
heavy quasiparticles
8
terahertz field
8
field driven
8
strong terahertz
4
terahertz third-harmonic
4
generation kinetic
4
kinetic heavy
4
quasiparticles caruo_{3}
4
caruo_{3} report
4

Similar Publications

We present a comprehensive analysis of the optical attributes of graphene sheets with charge carriers residing on a curved substrate. In particular, we focus on the fascinating case of Beltrami geometry and provide an explicit parametrization for this curved two-dimensional surface. By employing the massless Dirac description that is characteristic of graphene, we investigate the impact of the curved geometry on the optical properties within the sample.

View Article and Find Full Text PDF

Three two-dimensional (2D) chiral Ag(I) complexes with formulas [Ag(L)(5-nipa)] (), [Ag(L)(5-nipa)] (), and {[Ag(L)(5-hipa)]·2HO} () were prepared through the reactions of AgO with enantiopure -monodentate N-donors (L/L) and different dicarboxylic acids bearing A (acceptor)-π-- and D (donor)-π--type structural features, where / = (-)/(+)-2-(4'-pyridyl)-4,5-pinene-pyridine, 5-Hnipa = 5-nitroisophthalic acid, and 5-Hhipa = 5-hydroxyisophthalic acid. A study of their nonlinear optical responses reveals that chiral and enantiomeric pairs with the A-π--type dicarboxylic acid ligand simultaneously display second- and third-harmonic generation (SHG and THG) responses, while chiral containing the D-π--type dicarboxylic acid ligand only exhibits a very strong THG response. The THG intensity of is 451 × α-SiO, being about 27 and 24 times larger than those of and , respectively.

View Article and Find Full Text PDF

Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.

View Article and Find Full Text PDF

Multiphoton and Harmonic Imaging of Microarchitected Materials.

ACS Appl Mater Interfaces

January 2025

Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

Article Synopsis
  • Microadditive manufacturing enables the creation of intricate nano- and microscale components, leading to advancements in various industries.
  • This research explores two-photon and three-photon fluorescence imaging, along with third-harmonic generation microscopy, to analyze complex lattice structures produced by multiphoton lithography.
  • The study reveals that multiphoton fluorescence imaging provides better depth penetration and nondestructive identification of internal modifications and defects, improving quality control in microadditively manufactured products.
View Article and Find Full Text PDF

This study investigates the optical properties of carbon nanotubes (CNTs) and silicene nanotubes (SiNTs) under the influence of external magnetic fields, focusing on their linear and nonlinear optical responses. A tight-binding model is employed to analyze the effects of magnetic fields on the electronic band structure, dipole matrix elements, and various optical susceptibilities of zigzag CNTs and SiNTs. The results reveal significant magnetic field-induced modifications in both linear and nonlinear optical spectra.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!