A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhancing Orbital Interaction in Spinel LiNiMnO Cathode for High-Voltage and High-Rate Li-Ion Batteries. | LitMetric

High voltage cobalt-free spinel LiNiMnO (LNMO) is well organized as a high-power cathode material for lithium (Li)-ion batteries, however, the weak interaction between the 3d orbital of the transition metal (TM) ions and the 2p orbital of oxygen (O) leads to the instability of crystal structural, hindering the long-term stable cycling of LNMO cathode especially at high temperatures. Here, a design strategy of orbital interaction is initiated to strengthen TM 3d-O 2p framework in P-doped LNMO (P-LNMO) by choosing phytic acid as P dopant, which can realize more uniform doping compared to regular phosphate. The results show that the enhancement of TM 3d-O 2p orbital interaction in P-LNMO can suppress the Jahn-Teller effect and subsequent dissolution of Mn, as well as lowers the energy barrier for Li ion insertion/extraction kinetics. As a result, superior electrochemical performances including high discharge capacity, stable cycling behavior and enhanced rate capability of P-LNMO are obtained. Significantly, the P-LNMO pouch cell shows great cycling stability with 97.4% capacity retention after 100 cycles.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202402339DOI Listing

Publication Analysis

Top Keywords

orbital interaction
12
spinel linimno
8
li-ion batteries
8
stable cycling
8
enhancing orbital
4
interaction
4
interaction spinel
4
linimno cathode
4
cathode high-voltage
4
high-voltage high-rate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!