Background: Protein hydrolysates (PHs) can enhance plant nitrogen nutrition and improve the quality of vegetables, depending on their bioactive compounds. A tomato greenhouse experiment was conducted under both optimal (14 mM) and suboptimal (2 mM) nitrogen (N-NO) conditions. Tomatoes were treated with a new Malvaceae-derived PH (MDPH) and its molecular fractions (MDPH1, >10 kDa; MDPH2, 1-10 kDa and MDPH3, <1 kDa).

Results: Under optimal N conditions, the plants increased biomass and fruit yield, and showed a higher photosynthetic pigment content in leaves in comparison with suboptimal N, whereas under N-limiting conditions, an increase in dry matter, soluble solid content (SSC) and lycopene, a reduction in firmness, and changes in organic acid and phenolic compounds were observed. With 14 mM N-NO, MDPH3 stimulated an increase in dry weight and increased yield components and lycopene in the fruit. The MDPH2 fraction also resulted in increased lycopene accumulation in fruit under 14 mM N-NO. At a low N level, the PH fractions showed distinct effects compared with the whole MDPH and the control, with an increase in biomass for MDPH1 and MDPH2 and a higher pigment content for MDPH3. Regardless of N availability, all the fractions affected fruit quality by increasing SSC, whereas MDPH2 and MDPH3 modified organic acid content and showed a higher concentration of flavonols, lignans, and stilbenes.

Conclusion: The molecular weight of the peptides modifies the effect of PHs on plant performance, with different behavior depending on the level of N fertilization, confirming the effectiveness of fractioning processes. © 2024 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jsfa.13596DOI Listing

Publication Analysis

Top Keywords

foliar applications
4
applications malvaceae-derived
4
malvaceae-derived protein
4
protein hydrolysate
4
hydrolysate fractions
4
fractions differentially
4
differentially modulate
4
modulate yield
4
yield functional
4
functional traits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!