The present work aimed to study whether a high sugar diet can alter immune responses and the gut microbiome in green iguanas. Thirty-six iguanas were split into four treatment groups using a 2×2 design. Iguanas received either a sugar-supplemented diet or a control diet, and either a lipopolysaccharide (LPS) injection or a phosphate-buffered saline (PBS) injection. Iguanas were given their respective diet treatment through the entire study (∼3 months) and received a primary immune challenge 1 and 2 months into the experiment. Blood samples and cloacal swabs were taken at various points in the experiment and used to measure changes in the immune system (bacterial killing ability, lysis and agglutination scores, LPS-specific IgY concentrations), and alterations in the gut microbiome. We found that a sugar diet reduces bacterial killing ability following an LPS challenge, and sugar and the immune challenge temporarily alters gut microbiome composition while reducing alpha diversity. Although sugar did not directly reduce lysis and agglutination following the immune challenge, the change in these scores over a 24-h period following an immune challenge was more drastic (it decreased) relative to the control diet group. Moreover, sugar increased constitutive agglutination outside of the immune challenges (i.e. pre-challenge levels). In this study, we provide evidence that a high sugar diet affects the immune system of green iguanas (in a disruptive manner) and alters the gut microbiome.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.246981DOI Listing

Publication Analysis

Top Keywords

gut microbiome
20
sugar diet
16
immune challenge
16
high sugar
12
green iguanas
12
immune
9
diet
8
control diet
8
immune system
8
bacterial killing
8

Similar Publications

Background: Immune checkpoint inhibitors (ICIs) in combination with antiangiogenic drugs have shown promising outcomes in the third-line and subsequent treatments of patients with microsatellite stable metastatic colorectal cancer (MSS-mCRC). Radiotherapy (RT) may enhance the antitumor effect of immunotherapy. However, the effect of RT exposure on patients receiving ICIs and targeted therapy remains unclear.

View Article and Find Full Text PDF

Colon cancer is a leading cause of cancer-related deaths worldwide and has been increasingly linked to the gut microbiome. Clostridium butyricum (CB), a probiotic, has demonstrated potential in influencing colon cancer cell behavior, particularly through the modulation of long non-coding RNAs (lncRNAs) and mRNAs. This study examines the effects of CB on the expression of lncRNAs and mRNAs in SW480 colon cancer cells and their association with apoptosis.

View Article and Find Full Text PDF

Probiotics effectively alleviate host diarrhoea, but the specific mechanism is not clear. Therefore, we explored the protective mechanism of Bacillus coagulans (BC) on intestinal barrier injury induced by Klebsiella pneumoniae (K. pneumoniae) in rabbits by HE, immunofluorescence and 16S rRNA.

View Article and Find Full Text PDF

Background: Accurate classification of host phenotypes from microbiome data is crucial for advancing microbiome-based therapies, with machine learning offering effective solutions. However, the complexity of the gut microbiome, data sparsity, compositionality, and population-specificity present significant challenges. Microbiome data transformations can alleviate some of the aforementioned challenges, but their usage in machine learning tasks has largely been unexplored.

View Article and Find Full Text PDF

Background: Obesity and metabolic syndrome are major public health concerns linked to cognitive decline with aging. Prior work from our lab has demonstrated that short-term high fat diet (HFD) rapidly impairs memory function via a neuroinflammatory mechanism. However, the degree to which these rapid inflammatory changes are unique to the brain is unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!