AI Article Synopsis

  • Pharmaceuticals are becoming a significant environmental concern, with a study focused on the toxicity of diclofenac and citalopram to the amphipod Corophium volutator in sediment conditions.
  • * Diclofenac was found to be more toxic than citalopram, with median lethal concentrations (LC50s) varying based on the exposure measure used, highlighting the impact of different evaluation methods on toxicity outcomes.
  • * The combined effects of diclofenac and citalopram were analyzed using mixture models, showing that the concentration addition model aligned well with observations, while independent action predicted a stronger synergistic effect.

Article Abstract

Pharmaceuticals have been classified as an environmental concern due to their increasing consumption globally and potential environmental impact. We examined the toxicity of sediment-associated diclofenac and citalopram administered as both single compounds and in a mixture to the sediment-living amphipod Corophium volutator. This laboratory-based study addressed the following research questions: (1) What is the toxicity of sediment-associated diclofenac and citalopram to C. volutator? (2) Can the mixture effect be described with either of the two mixture models: concentration addition (CA) or independent action (IA)? (3) What is the importance of the choice of (i) exposure measure (start concentration, time-weighted average [TWA], full exposure profile) and (ii) effect model (concentration-response vs. the toxicokinetic-toxicodynamic model general unified threshold model for survival in its reduced form [GUTS-RED]) for the derived effect concentration values? Diclofenac was more toxic than citalopram to C. volutator as a single compound (10-day exposure). Diclofenac exposure to C. volutator provided median lethal concentrations (LC50s) within the same range (11 µg g dry wt sediment) using concentration-response based on TWA and both GUTS-RED models. However, concentration-response based on measured start concentrations provided an approximately 90% higher LC50 (21.6 ± 2.0 µg g dry wt sediment). For citalopram, concentration-response parameters were similar regardless of model or concentration used (LC50 85-97 µg g dry wt sediment), however, GUTS-RED with the assumption of individual tolerance resulted in a lower LC50 (64.9 [55.3-74.8] µg g dry wt sediment). The mixture of diclofenac and citalopram followed the CA quite closely, whereas the result was synergistic when using the IA prediction. In summary, concentration-response based on TWA and GUTS-RED provided similar and reasonably good fits compared to the data set. The implications are that GUTS-RED will provide a more flexible model, which, in principle, can extend beyond the experimental period and make predictions based on variable exposure profiles (toxicity at different time frames and at different variable exposure scenarios) compared to concentration-response, which provides contaminant toxicity at one point in time. Environ Toxicol Chem 2024;43:1767-1777. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.

Download full-text PDF

Source
http://dx.doi.org/10.1002/etc.5894DOI Listing

Publication Analysis

Top Keywords

dry sediment
16
variable exposure
12
toxicity sediment-associated
12
diclofenac citalopram
12
concentration-response based
12
sediment-associated diclofenac
8
based twa
8
twa guts-red
8
exposure
7
concentration-response
6

Similar Publications

Occurrence, Bioaccumulation, and Human Exposure Risk of the Antiandrogenic Fluorescent Dye 7-(Dimethylamino)-4-methylcoumarin and 7-(Diethylamino)-4-methylcoumarin in the Dongjiang River Basin, South China.

Toxics

December 2024

Key Laboratory of Ministry of Education for Water Quality Security and Protection in Pearl River Delta, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.

Recently, 7-diethylamino-4-methylcoumarin (DEAMC) has been identified as a potent antiandrogenic compound in the surface water; however, little is known about the antiandrogenic potentials of other synthetic coumarins and their occurrence in the aquatic ecosystem. In this study, for the first time, we observed that 7-dimethylamino-4-methylcoumarin (DAMC) elicited androgen receptor (AR) antagonistic activity with a 50% inhibitory concentration (IC) of 1.46 µM, which is 14.

View Article and Find Full Text PDF

On the African continent, Picrodendraceae are represented by four genera. Their intracontinental paleophytogeographic histories and paleoecological aspects are obscured by the lack of pre-Miocene fossils. For this study, late Eocene sediments from Kenya were investigated.

View Article and Find Full Text PDF

Plastic pollution in aquatic ecosystems has become a critical global environmental challenge, threatening biodiversity, water quality, and human health. This study investigates macroplastics distribution and characterization in the highly polluted Klang River, Malaysia, and proposes a protocol to compute total macroplastic yield in the river basin. A total of 240 macroplastic items were collected over a 20-km stretch from the river mouth inland, with an average of 0.

View Article and Find Full Text PDF

Distribution of potentially toxic elements in sediments of the municipal river channel (Balu), Dhaka, Bangladesh: Ecological and health risks assessment.

J Contam Hydrol

January 2025

International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China. Electronic address:

The concern of potential toxic elements (PTEs) contamination in the river ecosystem is growing due to anthropological activity. The contents of seven PTEs in sediments from the Balu River channel were analyzed using atomic absorption spectroscopy (AAS) and an environmental risk model. Several PTEs were found in the sediment at high levels, including zinc (Zn), copper (Cu), arsenic (As), lead (Pb), cadmium (Cd), nickel (Ni), and mercury (Hg), that might pose a risk to human and ecological health.

View Article and Find Full Text PDF

Occurrence and distribution of brominated and fluorinated persistent organic pollutants in surface sediments focusing on industrially affected rivers.

Chemosphere

January 2025

Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan, 46241, Republic of Korea. Electronic address:

Article Synopsis
  • The study focused on legacy persistent organic pollutants like PBDEs, HBCDs, and PFAS found in sediments from five major rivers, revealing higher contamination levels in areas with industrial activity.
  • The predominant compounds detected were decaBDE for PBDEs, γ-HBCD for HBCDs, and PFOS for PFAS, with alternative substances appearing less frequently.
  • Overall, while most ecological risk assessment values were low, PBDEs and PFOS posed significant risks at certain sites, indicating a need for ongoing monitoring to protect aquatic ecosystems.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!