Transaminases are choice biocatalysts for the synthesis of chiral primary amines, including amino acids bearing contiguous stereocenters. In this study, we employ lysine as a "smart" amine donor in transaminase-catalyzed dynamic kinetic resolution reactions to access β-branched noncanonical arylalanines. Our mechanistic investigation demonstrates that, upon transamination, the lysine-derived ketone byproduct readily cyclizes to a six-membered imine, driving the equilibrium in the desired direction and thus alleviating the need to load superstoichiometric quantities of the amine donor or deploy a multienzyme cascade. Lysine also shows good overall compatibility with a panel of wild-type transaminases, a promising hint of its application as a smart donor more broadly. Indeed, by this approach, we furnished a broad scope of β-branched arylalanines, including some bearing hitherto intractable cyclopropyl and isopropyl substituents, with high yields and excellent selectivities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.4c05175DOI Listing

Publication Analysis

Top Keywords

amine donor
12
β-branched noncanonical
8
amino acids
8
transaminase-catalyzed synthesis
4
synthesis β-branched
4
noncanonical amino
4
acids driven
4
driven lysine
4
lysine amine
4
donor
4

Similar Publications

Acylation represents a pivotal biochemical process that is instrumental in the modification of secondary metabolites throughout the growth and developmental stages of plants. The BAHD acyltransferase family within the plant kingdom predominantly utilizes coenzyme A thioester as the acyl donor, while employing alcohol or amine compounds as the acceptor substrates to facilitate acylation reactions. Using bioinformatics approaches, the gene family members in the genome of () were identified and characterized including gene structure, conserved motifs, -acting elements, and potential gene functions.

View Article and Find Full Text PDF

Three different two dimensional Cd(II)-based metal-organic frameworks (MOFs) have been synthesized by utilizing same N,N'-donor ligand and three different functionalized dicarboxylate linkers namely isophthalate, 5-nitroisophthalate and 5-hydroxyisophthalate for compound 1, 2 and 3 respectively. The compounds that are isoreticular bi-walled 2D frameworks, show dual fluorescence emission spectra for their π-π* and n-π* excitation. Compound 1 is consists of unsubstituted bridging isophthalate whereas 2 and 3 are made with bridging isophthalate that are substituted by electron withdrawing -NO2 group and electron donating -OH group respectively.

View Article and Find Full Text PDF

We herein report a microwave-assisted Buchwald-Hartwig double amination reaction to synthesize potential thermally activated delayed fluorescence compounds, forming C(sp)-N bonds between donor and acceptor units. Our approach reduces reaction times from 24 h to 10-30 min and achieves moderate to excellent yields, outperforming conventional heating methods. The method is compatible with various aryl bromides and secondary amines, including phenoxazine, phenothiazine, acridine, and carbazole.

View Article and Find Full Text PDF

Donor-acceptor (D-A) conjugated polymers have been widely reported as promising photocatalysts for organic conversion. However, achieving excellent photocatalytic performance still relies on the rational design of molecular structures and the careful selection of appropriate building blocks. In this study, we designed two D-A type conjugated porous polymers (CPPs) using 2,7,12-tribromo-5,5,10,10,15,15-hexamethyl-10,15-dihydro-5H-diindeno[1,2-a:1',2'-c]fluorene (Tx) as the donor unit and two 1,3,5-triazine-based derivatives, namely 2,4,6-tri(thiophen-2-yl)-1,3,5-triazine (TTT) and 2,4,6-triphenyl-1,3,5-triazine (TPT), as the acceptor units.

View Article and Find Full Text PDF

Hyaluronan (HA; [-3-GlcNAc-1-beta-4-GlcA-1-beta] ), an essential matrix polysaccharide of vertebrates and the molecular camouflage coating in certain pathogens, is polymerized by "HA synthase" (HAS) enzymes. Three HAS classes have been identified with biotechnological utility, but only the Class II PmHAS from Type A has been useful for preparation of very defined HA polymers in vitro. Two general chemoenzymatic strategies with different size products are possible: (1) repetitive step-wise extension reactions by sequential addition of a single monosaccharide from a donor UDP-sugar onto an acceptor (or "primer") comprised of a short glycosaminoglycan chain (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!