Nuclear quantum effects on the vibrational dynamics of the water-air interface.

J Chem Phys

Center for Advanced Systems Understanding (CASUS), Untermarkt 20, D-02826 Görlitz, Germany, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany, and TU Dresden, Institute of Artificial Intelligence, Chair of Computational System Sciences, Nöthnitzer Straße 46, D-01187 Dresden, Germany.

Published: May 2024

We have applied path-integral molecular dynamics simulations to investigate the impact of nuclear quantum effects on the vibrational dynamics of water molecules at the water-air interface. The instantaneous fluctuations in the frequencies of the O-H stretch modes are calculated using the wavelet method of time series analysis, while the time scales of vibrational spectral diffusion are determined from frequency-time correlation functions and joint probability distributions. We find that the inclusion of nuclear quantum effects leads not only to a redshift in the vibrational frequency distribution by about 120 cm-1 for both the bulk and interfacial water molecules but also to an acceleration of the vibrational dynamics at the water-air interface by as much as 35%. In addition, a blueshift of about 45 cm-1 is seen in the vibrational frequency distribution of interfacial water molecules compared to that of the bulk. Furthermore, the dynamics of water molecules beyond the topmost molecular layer was found to be rather similar to that of bulk water.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0204071DOI Listing

Publication Analysis

Top Keywords

water molecules
16
nuclear quantum
12
quantum effects
12
vibrational dynamics
12
water-air interface
12
effects vibrational
8
dynamics water-air
8
dynamics water
8
vibrational frequency
8
frequency distribution
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!