Background: Periosteal expansion (PEO) results in the formation of new bone in the space created between existing bone by expanding the periosteum. PEO has already been performed on rabbit parietal bone and effective new bone formation has been demonstrated. In this study, the utility of a polyethylene terephthalate (PET) membrane as an activator was evaluated in the more complex morphology of the mandible.

Methods: A PET membrane coated with hydroxyapatite (HA)/gelatine was placed in the rabbit mandibular bone at lower margin of mandibular molar region underneath periosteum, and screw-fixed. In the experimental group, the membrane was bent and screw-fixed along the lateral surface of the bone, with removal of the outer screw after 7 days followed by activation of the membrane. The experimental group was divided into two subgroups: with and without a waiting period for activation. Three animals were euthanized at 3 weeks and another three at 5 weeks postoperatively. Bone formation was assessed using micro-CT as well as histomorphometric and histological methods.

Results: No PET membrane-related complications were observed. The area of newly formed bone and the percentage of new bone in the space created by the stretched periosteum did not significantly differ between the control and experimental groups. However, in the experimental group a greater volume was present after 5 weeks than after 3 weeks. Histologically, bone formation occurred close to the site of cortical bone perforation, with many sinusoidal vessels extending through the perforations in the new bone into the overlying fibrous tissue. Inflammatory cells were not seen in the bone.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cid.13337DOI Listing

Publication Analysis

Top Keywords

bone
14
bone formation
12
experimental group
12
polyethylene terephthalate
8
membrane experimental
8
bone space
8
space created
8
pet membrane
8
membrane
5
experimental
5

Similar Publications

Regulation of T Cell Glycosylation by MXene/β-TCP Nanocomposite for Enhanced Mandibular Bone Regeneration.

Adv Healthc Mater

January 2025

State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Immune-mediated bone regeneration driven by bone biomaterials offers a therapeutic strategy for repairing bone defects. Among 2D nanomaterials, TiCT MXenes have garnered substantial attention for their potential in tissue regeneration. This investigation concentrates on the role of MXene nanocomposites in modulating the immune microenvironment within bone defects to facilitate bone tissue restoration.

View Article and Find Full Text PDF

Indole-3-propionic acid (IPA), a metabolite produced by gut microbiota through tryptophan metabolism, has recently been identified as playing a pivotal role in bone metabolism. IPA promotes osteoblast differentiation by upregulating mitochondrial transcription factor A (Tfam), contributing to increased bone density and supporting bone repair. Simultaneously, it inhibits the formation and activity of osteoclasts, reducing bone resorption, possibly through modulation of the nuclear factor-κB (NF-κB) pathway and downregulation of osteoclast-associated factors, thereby maintaining bone structural integrity.

View Article and Find Full Text PDF

Variations in the development of carpal bones are uncommon, with the scaphoid bone typically forming from the fusion of the os centrale carpi and the radial chondrification center during embryogenesis. A bipartite scaphoid is a rare congenital disorder that occurs when these ossification centers fail to fuse, with a prevalence ranging from 0.1% to 0.

View Article and Find Full Text PDF

Background: Some mammals including the swine carry a fibrous vestigial clavicle, but a subclavius muscle (SBM) extends between the first rib and the supraspinatus muscle surface fascia. We aimed to examine development of the SBM and clavicle for finding a specific factor to provide the curious morphology.

Materials And Methods: Histological sections of early- and midterm fetuses of the swine, human and mouse were observed and compared at the almost same morphological stage.

View Article and Find Full Text PDF

3D Printing of a Self-Healing, Bioactive, and Dual-Cross-Linked Polysaccharide-Based Composite Hydrogel as a Scaffold for Bone Tissue Engineering.

ACS Appl Bio Mater

January 2025

Advanced Magnetic Materials Research Center, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, North Kargar Street, Tehran 11155-4563, Iran.

Although 3D printing is becoming a dominant technique for scaffold preparation in bone tissue engineering (TE), developing hydrogel-based ink compositions with bioactive and self-healing properties remains a challenge. This research focuses on developing a bone scaffold based on a composite hydrogel, which maintains its self-healing properties after incorporating bioactive glass and is 3D-printable. The plain hydrogel ink was synthesized using natural polymers of 1 wt % N-carboxyethyl chitosan, 2 wt % hyaluronic acid aldehyde, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!