Background: Upon uptake by stressed cells, functional mitochondria can perform their normal functions, ultimately enhancing the survival of host cells. However, despite the promising results of this approach, there is still a lack of understanding of the specific relationship between nerve cells and functional mitochondria.
Methods: Functional mitochondria (F-Mito) were isolated from bone marrow-derived mesenchymal stem cells (BMSCs). The ability of microglia cells to internalize F-Mito was evaluated using a middle cerebral artery occlusion (MCAO) model in C57BL/6J mice and an oxygen-glucose deprivation/reoxygenation (OGD/R) cell model. After OGD/R and F-Mito treatment, the temporal dynamics of intracellular reactive oxygen species (ROS) levels were examined.The relationship between ROS levels and F-Mito uptake was assessed at the individual cell level using MitoSOX, Mitotracker, and HIF-1α labeling.
Results: Our findings indicate that microglia cells exhibit enhanced mitochondrial uptake compared to astrocytes. Furthermore, internalized F-Mito reduced ROS levels and HIF-1α levels. Importantly, we found that the ROS response in microglia cells following ischemia is a critical regulator of F-Mito internalization, and promoting autophagy in microglia cells might reduce the uptake of ROS and HIF-1α levels.
Conclusion: It is verified that F-Mito derived from BMSCs play a protective role in ischemia-reperfusion injury, as their weakening reduces microglial cell activation and alleviates neuroinflammation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129787 | PMC |
http://dx.doi.org/10.2147/JIR.S463692 | DOI Listing |
J Neuroinflammation
January 2025
Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
Background: The retinal degenerative diseases retinitis pigmentosa (RP) and atrophic age- related macular degeneration (AMD) are characterized by vision loss from photoreceptor (PR) degeneration. Unfortunately, current treatments for these diseases are limited at best. Genetic and other preclinical evidence suggest a relationship between retinal degeneration and inflammation.
View Article and Find Full Text PDFSci Rep
January 2025
School of Pharmacy, Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, USA.
The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature.
View Article and Find Full Text PDFACS Chem Neurosci
January 2025
Jiangxi Key Laboratory of Neurological Diseases, Department of Neurosurgery, the first Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China.
Patients with spinal cord injury (SCI) may develop depression, which can affect their rehabilitation. However, the underlying mechanism of depression in SCI patients remains unclear. Previous studies have revealed increased p38 MAPK phosphorylation in the rat hippocampus after SCI, accompanied by depression-like behaviors.
View Article and Find Full Text PDFGlia
January 2025
Department of Ophthalmology, Bern University Hospital and Department of BioMedical Research, University of Bern, Bern, Switzerland.
Glia antigen-presenting cells (APCs) are pivotal regulators of immune surveillance within the retina, maintaining tissue homeostasis and promptly responding to insults. However, the intricate mechanisms underlying their local coordination and activation remain unclear. Our study integrates an animal model of retinal injury, retrospective analysis of human retinas, and in vitro experiments to gain insights into the crucial role of antigen presentation in neuroimmunology during retinal degeneration (RD), uncovering the involvement of various glial cells, notably Müller glia and microglia.
View Article and Find Full Text PDFInt J Dev Neurosci
February 2025
Neurodegeneration and Repair Lab, Department of Pathology, Postgraduate Program in Anatomical Pathology, Faculty of Medicine, Universitary Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Most of the malformations of the polymicrogyria spectrum are caused by destructive lesions of the neocortex during the third trimester of pregnancy, triggered by hypoxic-ischemic, hemorrhagic or infectious events, with neuroinflammation as a common pathophysiological mechanism. Our study investigated hydrocortisone treatment in attenuating inflammation, malformations development and seizures predisposition in mice subjected to neonatal transcranial freeze lesion. Our results show attenuation of malformation and predisposition to febrile seizures, with concomitant reduction of macrophages/microglia after neonatal freeze lesion, polarizing them towards an anti-inflammatory profile.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!