Seed quality and safety are related to national food security, and seed variety purity is an essential indicator in seed quality detection. This study established a maize seed dataset comprising 5877 images of six different types and proposed a maize seed recognition model based on an improved ResNet50 framework. Firstly, we introduced the ResStage structure in the early stage of the original model, which facilitated the network's learning process and enabled more efficient information propagation across the network layers. Meanwhile, in the later residual blocks of the model, we introduced both the efficient channel attention (ECA) mechanism and depthwise separable (DS) convolution, which reduced the model's parameter cost and enabled the capturing of more precise and detailed features. Finally, a Swish-PReLU mixed activation function was introduced globally to improve the overall predictive power of the model. The results showed that our model achieved an impressive accuracy of 91.23% in corn seed classification, surpassing other related models. Compared with the original model, our model improved the accuracy by 7.07%, reduced the loss value by 0.19, and decreased the number of parameters by 40%. The research suggested that this method can efficiently classify corn seeds, holding significant value in seed variety identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128617 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1382715 | DOI Listing |
J Dairy Sci
January 2025
Agriculture and Agri-Food Canada, Quebec Research and Development Centre, Quebec, QC G1V 2J3 Canada.
This study examined the effects of supplementing dairy cows with a mixture of essential oils on enteric CH emissions, apparent total-tract nutrient digestibility, N utilization, and lactational performance (production, components and efficiency). Thirty-two multiparous lactating Holstein cows were used in a randomized complete block design. Cows averaged (mean ± SD) 95 ± 15.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.
The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.
View Article and Find Full Text PDFSci Rep
January 2025
Plant Production Department, College of Food and Agriculture Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
Maize (Zea mays L.) faces significant challenges to its growth and productivity from heavy metal stress, particularly Chromium (Cr) stress, which induces reactive oxygen species (ROS) generation and damages photosynthetic tissues. This study aimed to investigate the effects of fulvic acid (FA) application, via foliar spray or root irrigation, on mitigating chromium stress in maize by evaluating its impact on antioxidant activity and growth parameters.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China. Electronic address:
The demand for exploring and investigating novel starches for various applications has been high, yet starches abundant in Millettia speciosa Champ (M. speciose) plants have barely been studied. This study aims to investigate the multiscale structure and physicochemical properties, especially good hot-extrusion 3D printability of M.
View Article and Find Full Text PDFFood Chem
December 2024
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Zhejiang University-Wuxi Xishan Joint Modern Agricultural Research Center, Wuxi 214100, China. Electronic address:
To investigate the impact of safflower seed oil on the structural and digestive properties of complexes formed by fatty acids of varying chain lengths with maize starch, the starch-fatty acid ternary complexes were prepared by a hydrothermal method. The results indicated that safflower seed oil inhibited the complexation of relatively short-chain fatty acids (C10:0, C12:0, and C16:0) with starch, and promoted the complexation of long-chain fatty acids (C18:0). Intriguingly, safflower seed oil showed no significant impact on the formation of linoleic acid (C18:2) complexes, suggesting selective interactions within the starch-fatty acid complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!