Background: The human gut microbiota has been identified as a potentially important factor influencing the development of COVID-19. It is believed that the disease primarily affects the organism through inflammatory pathways. With the aim of improving early diagnosis and targeted therapy, it is crucial to identify the specific gut microbiota associated with COVID-19 and to gain a deeper understanding of the underlying processes. The present study sought to investigate the potential causal relationship between the gut microbiota and COVID-19, and to determine the extent to which inflammatory proteins act as mediators in this relationship.
Methods: Bidirectional mendelian randomization (MR) and Two-step mediated MR analyses were applied to examine causative associations among 196 gut microbiota, 91 inflammatory proteins and COVID-19. The main analytical method used in the MR was the random effects inverse variance weighted (IVW) method. This was complemented by the Bayesian weighted Mendelian randomization (BWMR) method, which was utilized to test the hypothesis of MR. In order for the results to be deemed reliable, statistical significance was required for both methods. Validation was then carried out using an external dataset, and further meta-analyses were conducted to authenticate that the association was reliable.
Results: Results of our research indicated that seven gut microbiota were actively associated to the COVID-19 risk. Five inflammatory proteins were associated with COVID-19 risk, of which three were positively and two were negatively identified with COVID-19. Further validation was carried out using sensitivity analyses. Mediated MR results revealed that CCL2 was a possible mediator of causality of family Bifidobacteriaceae and order Bifidobacteriales with COVID-19, mediating at a ratio of 12.73%.
Conclusion: Suggesting a genetic causation between specific gut microbiota and COVID-19, our present research emphasizes the underlying mediating role of CCL2, an inflammatory factor, and contributes to a deeper understanding of the mechanism of action underlying COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11128586 | PMC |
http://dx.doi.org/10.3389/fimmu.2024.1406291 | DOI Listing |
Inflamm Bowel Dis
March 2025
Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN, USA.
J Immunol
March 2025
INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France.
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration.
View Article and Find Full Text PDFJ Immunol
March 2025
Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.
B cell depletion is an efficacious therapy for multiple sclerosis, but its long-term safety profile in the gastrointestinal tract has not been specifically studied. This is of importance because the gut is the largest reservoir of IgA in the body, which maintains gut homeostasis in part by regulating the composition of the gut microbiota. This was addressed by development of a prolonged B cell depletion model using human CD20 transgenic mice and B cell depletion with the anti-human CD20 antibodies rituximab, a humanized mouse monoclonal, and 2H7, the mouse precursor to ocrelizumab.
View Article and Find Full Text PDFBrief Bioinform
March 2025
Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, United States.
This work aims to (1) identify microbial and metabolic alterations and (2) reveal a shift in phenylalanine production-consumption equilibrium in individuals with HIV. We conducted extensive searches in multiple databases [MEDLINE, Web of Science (including Cell Press, Oxford, HighWire, Science Direct, IOS Press, Springer Nature, PNAS, and Wiley), Google Scholar, and Embase] and selected two case-control 16S data sets (GenBank IDs: SRP039076 and EBI ID: ERP003611) for analysis. We assessed alpha and beta diversity, performed univariate tests on genus-level relative abundances, and identified significant microbiome features using random forest.
View Article and Find Full Text PDFFolia Microbiol (Praha)
March 2025
Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
The gut-kidney axis is the bidirectional relationship between the gut microbiota and the kidney function. Chronic inflammatory responses can impair kidney function and probiotics and postbiotics agents can have positive effects on gut health and kidney function by modulating inflammation through affecting autophagy signaling pathway. The aim of the current study was to evaluate the properties of our probiotic and postbiotics to improve kidney health by focusing the autophagy signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!