Hepatocellular carcinoma (HCC) has a high morbidity and mortality rate, and the survival rate of HCC patients remains low. Animal medicines have been used as potential therapeutic tools throughout the long history due to their different structures of biologically active substances with high affinity to the human body. Here, we focus on the effects and the mechanism of action of animal-derived natural products against HCC, which were searched in databases encompassing Web of Science, PubMed, Embase, Science Direct, Springer Link, and EBSCO. A total of 24 natural products from 12 animals were summarized. Our study found that these natural products have potent anti-hepatocellular carcinoma effects. The mechanism of action involving apoptosis induction, autophagy induction, anti-proliferation, anti-migration, and anti-drug resistance via phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), Ras/extracellular signal regulated kinases (ERK)/mitogen-activated protein kinase (MAPK), Wnt/β-catenin, and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways. Huachansu injection and sodium cantharidate have been used in clinical applications with good efficacy. We review the potential of animal-derived natural products and their derivatives in the treatment of HCC to date and summarize their application prospect and toxic side effects, hoping to provide a reference for drug development for HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11129636PMC
http://dx.doi.org/10.3389/fphar.2024.1399882DOI Listing

Publication Analysis

Top Keywords

natural products
20
animal-derived natural
12
hepatocellular carcinoma
8
effects mechanism
8
mechanism action
8
products
5
hcc
5
products hepatocellular
4
carcinoma therapy
4
therapy current
4

Similar Publications

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..

View Article and Find Full Text PDF

New cinnamic acid sugar esters as potential UVB filters: Synthesis, cytotoxicity, and physicochemical properties.

Carbohydr Res

January 2025

Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy. Electronic address:

Cinnamic Acid Sugar Ester Derivatives (CASEDs) are a class of natural compounds that exhibit several interesting biological activities. However, to date, no examples of their use in sunscreen formulations have been reported. Here, we describe the synthesis of a series of novel cinnamic acid esters of glucose (4a-g), ribose (4h) and lactose (4i) starting from the respective acetals 3.

View Article and Find Full Text PDF

Background: Real-world COVID-19 vaccine effectiveness (VE) studies are investigating exposures of increasing complexity accounting for time since vaccination. These studies require methods that adjust for the confounding that arises when morbidities and demographics are associated with vaccination and the risk of outcome events. Methods based on propensity scores (PS) are well-suited to this when the exposure is dichotomous, but present challenges when the exposure is multinomial.

View Article and Find Full Text PDF

A Spiropyran-Based Hydrogel Composite for Wearable Detectors to Monitor Visible Light Intensity to Prevent Myopia.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China.

A wearable detector to monitor visible light intensity is realized by the restrained photochromism of a hydrogel composite containing light-responsive spiropyran with hydroxyl groups (SPOH). When exposed to visible light, the SPOH experiences a ring-opening to a ring-closed transition accompanied by discoloration from red to yellow. Unlike in the solution, the photochromism/discoloration rate is strongly correlated to the cross-linking points.

View Article and Find Full Text PDF

Gold(I)-Catalyzed 2-Deoxy-β-glycosylation via 1,2-Alkyl/Arylthio Migration: Synthesis of Velutinoside A Pentasaccharide.

J Am Chem Soc

January 2025

Molecular Synthesis Center, Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotherapeutics, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.

2-Deoxy-β-glycosides are essential components of natural products and pharmaceuticals; however, the corresponding 2-deoxy-β-glycosidic bonds are challenging to chemically construct. Herein, we describe an efficient catalytic protocol for synthesizing 2-deoxy-β-glycosides via either IPrAuNTf-catalyzed activation of a unique 1,2--positioned C2--propargyl xanthate (OSPX) leaving group or (PhO)PAuNTf-catalyzed activation of a 1,2--C2--alkynylbenzoate (OABz) substituent of the corresponding thioglycosides. These activation processes trigger 1,2-alkyl/arylthio-migration glycosylation, enabling the synthesis of structurally diverse 2-deoxy-β-glycosides under mild reaction conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!