The ubiquitin (Ub) code denotes the complex Ub architectures, including Ub chains of different lengths, linkage types, and linkage combinations, which enable ubiquitination to control a wide range of protein fates. Although many linkage-specific interactors have been described, how interactors are able to decode more complex architectures is not fully understood. We conducted a Ub interactor screen, in humans and yeast, using Ub chains of varying lengths, as well as homotypic and heterotypic branched chains of the two most abundant linkage types-lysine 48-linked (K48) and lysine 63-linked (K63) Ub. We identified some of the first K48/K63-linked branch-specific Ub interactors, including histone ADP-ribosyltransferase PARP10/ARTD10, E3 ligase UBR4, and huntingtin-interacting protein HIP1. Furthermore, we revealed the importance of chain length by identifying interactors with a preference for Ub3 over Ub2 chains, including Ub-directed endoprotease DDI2, autophagy receptor CCDC50, and p97 adaptor FAF1. Crucially, we compared datasets collected using two common deubiquitinase inhibitors-chloroacetamide and N-ethylmaleimide. This revealed inhibitor-dependent interactors, highlighting the importance of inhibitor consideration during pulldown studies. This dataset is a key resource for understanding how the Ub code is read.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11109483 | PMC |
http://dx.doi.org/10.26508/lsa.202402740 | DOI Listing |
Hematol Oncol
January 2025
University of California Irvine, Irvine, California, USA.
Despite the study of BCR::ABL1-positive and -negative myeloproliferative neoplasms (MPNs) providing seminal insights into cancer biology, tumor evolution and precision oncology over the past half century, significant challenges remain. MPNs are clonal hematopoietic stem cell-derived neoplasms with heterogenous clinical phenotypes and a clonal architecture which impacts the often-complex underlying genetics and microenvironment. The major driving molecular abnormalities have been well characterized, but debate on their role as disease-initiating molecular lesions continues.
View Article and Find Full Text PDFHum Genomics
January 2025
Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Richards Building B304, 3700 Hamilton Walk, Philadelphia, PA, 19104, USA.
Background: Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented.
View Article and Find Full Text PDFBMC Vet Res
January 2025
Department of Veterinary Clinical Sciences, Clinic for Swine, Justus-Liebig-University, Frankfurter Strasse 112, D-35392, Giessen, Germany.
Background: The recently identified swine inflammation and necrosis syndrome (SINS) affects tail, ears, teats, coronary bands, claws and heels of affected individuals. The primarily endogenous syndrome is based on vasculitis, thrombosis, and intimal proliferation, involving defence cells, interleukins, chemokines, and acute phase proteins and accompanied by alterations in clinical chemistry, metabolome, and liver transcriptome. The complexity of metabolic alterations and the influence of the boar led to hypothesize a polygenic architecture of SINS.
View Article and Find Full Text PDFSci Rep
January 2025
Dipartimento di Scienze Biologiche, Geologiche ed Ambientali, Università di Bologna, Bologna, Italy.
Heterogeneous fault architecture affects crustal seismotectonics and fluid migration. When studying it, we commonly rely on static conceptual models that generally overlook the absolute time dimension of fault (re)activation. Heterogenous faults, however, represent the end-result of protracted, cumulative and intricate deformation histories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!